5G vs. WiFi

The big cellular carriers envision a future where every smart device is connected to their cellular networks rather than to WiFi. They envision every home having to pay a monthly subscription to maintain connectivity for their wired devices. They envision every new car and truck coming with a subscription to cellular service.

I notice that the cellular providers talk about generating IoT revenues, but they’re never specific that the real vision is for everybody to buy additional cellular subscriptions. Most IoT applications will be low-bandwidth yet the carriers have been spreading the false message that 5G is all about faster broadband. I just saw another ludicrous article yesterday predicting how 5G was going to bring mobile gigabit broadband to rural America – a pure fantasy that is being fed by the public relations machines at Verizon and AT&T.

We aren’t seeing much press about the most important aspect of the new 5G specifications – that each cell site will be able to make up to 100,000 simultaneous connections. This isn’t being done for cellphones. It’s rare these days except in a few over-crowded places for a cellular call not to be connected. Placing a few small cell sites at the busiest places in most cities could solve most cellular bottlenecks without an upgrade to 5G.

The 100,000 connections give the wireless carriers the tool that can make a connection to every smart TV, smart washer and dryer, home video camera, burglar alarm sensor and every other wired device in a home. The big carriers are launching a direct challenge to WiFi as the wireless technology of choice for connecting our devices.

AT&T and Verizon envision every home having a new $10, $20 or $30 subscription to keep all of the devices connected. They also envision becoming the repository of all IoT data – moving them in front of Google and others in the chase for collecting the big data that drives advertising revenues. This is something they definitely don’t talk about.

It doesn’t take much of a thought exercise to understand that 5G is not about faster cellular service. Cellular subscribers will gladly take faster cellular broadband, but they probably aren’t willing to pay more for it. T-Mobile is already making that clear by announcing that they won’t charge more for 5G. The carriers are not going to spend tens of billions to implement 5G cellular technology that doesn’t drive the new revenues needed to pay for it. 5G is about IoT, plain and simple.

Today all of our home devices use WiFi. While WiFi is far from perfect, it seems to do an adequate job in connecting to the video camera at the front door, the smart TV, and the sensors in various appliances and devices around the home. WiFi has a few major advantages over cellular broadband – it’s already in our homes and connected to our devices and doesn’t require an additional monthly subscription.

I think people will resist another forced subscription. HP recently reported that the vast majority of their customers that buy 4G LTE-enabled laptops disable the cellular connection almost as soon as the new computer is out of the box. In this day of cellphones, very few car owners sign-up for the cellular subscription for OnStar when the free trial expires. I know that I personally would not buy a home device that eventually needed another cellular subscription to function.

The cellular carriers make a valid point in saying that WiFi is already growing inadequate for busy homes. But there are already short-term and long-term fixes on the way. The short-term fix is the upcoming migration to WiFi 6 using the 802.11ax standard. The new WiFi will better use MIMO antennas, frequency slicing and other techniques to allow for prioritization of devices and a more reliable connection to multiple devices.

The ultimate indoor broadband network will be a combination of WiFi and millimeter wave, or even faster spectrum. Higher frequency spectrum could provide bandwidth for the devices that use big bandwidth while keeping other devices on mid-range spectrum WiFi – getting the best from both sets of spectrum. That combination will allow for the easy integration, without interference for the connection of gigabit devices and also of tiny sensors that only communicate sporadically.

This is not the future that AT&T and Verizon want, because this is a world controlled by consumers who buy the wireless boxes that best suit them. I envision a future indoor-only wireless network that won’t require licensed spectrum or a cellular subscription since the millimeter waves and other higher frequencies won’t pass outdoors through walls.

The cellular carriers will have a monopoly on the outdoor sensor market. They will undoubtedly make the connections to smart cars, to smart agriculture, and to outdoor smart city sensors. But I think they will have a huge uphill battle convincing households to pay another monthly subscription for something that can be done better using a few well-placed routers.

There’s No 5G Race

FCC Chairman Ajit Pai was recently quoted in the Wall Street Journal as saying, “In my view, we’re in the lead with respect to 5G”. Over the last few months I’ve heard this same sentiment expressed in terms of how the US needs to win the 5G race.

This talk is just more hype and propaganda from the wireless industry that is trying to create a false crisis concerning 5G in order to convince politicians that we need to break our regulatory traditions and give the wireless carriers everything they want. After all, what politician wants to be blamed for the US losing the 5G race? This kind of propaganda works. I was just at an industry trade association show and heard three or four people say that the US needs to win the 5G race.

There is no 5G race; there is no 5G war; there is no 5G crisis. Anybody that repeats these phrases is wittingly or unwittingly pushing the lobbying agenda of the big wireless companies. Some clever marketer at one of the cellular carriers invented the imaginary 5G race as a great way to emphasize the importance of 5G.

Stop and think about it for a second. 5G is a telecom technology, not some kind of military secret that some countries are going to have, while others will be denied. 5G technology is being developed by a host of multinational vendors that are going to sell it to anybody who wants it. It’s not a race when everybody is allowed to win. If China, or Germany, or Finland makes a 5G breakthrough and implements some aspect of 5G first, within a year that same technology will be in the gear available to everybody.

What I really don’t get about this kind of hype and rhetoric is that 5G is basically a new platform for delivering bandwidth. If we are so fired up to not lose the 5G race, then why have we been so complacent about losing the fiber race? The US is far down on the list of countries in terms of our broadband infrastructure. We’ve not deployed fiber optics nearly as quickly as many other countries, and worse we still have millions of households with no broadband and many tens of millions of others with inadequate broadband. That’s the race we need to win because we are keeping whole communities out of the new economy, whch hurts us all.

I hope that my readers don’t think I’m against 5G because I’m for any technology that improves access to bandwidth. What I’m against is the industry hype that paints 5G as the technology that will save our country – because it will not. Today, more than 95% of the bandwidth we use is carried over wires, and 5G isn’t going to move that needle much. There are clearly some bandwidth needs that only wireless will solve, but households and businesses are going to continue to rely on wires to move big bandwidth.

When I ask wireless engineers about the future they almost all have painted the same picture. Over time we will migrate to a mixture of WiFi and millimeter wave spectrum indoors to move around big data. When virtual and augmented reality was first mentioned a few years ago, one of the big promises we heard was for telepresence, where we’ll be able to meet and talk with remote people as if they are sitting with us. That technology hasn’t moved forward because it requires huge broadband beyond what today’s WiFi routers can deliver. Indoor 5G using millimeter wave spectrum will finally unleash gigabit applications within the home.

The current hype for 5G has only one purpose. It’s a slick way for the wireless carriers to push the government to take the actions they want. 5G was raised as one of the reasons to kill net neutrality. It’s being touted as a reason to gut most of the rest of existing telecom legislation. 5G is being used as the reason to give away huge blocks of mid-range spectrum exclusively to the big wireless companies. It’s pretty amazing that the government would give so much away for a technology that will roll out slowly over the next decade.

Please think twice before you buy into the 5G hype. It takes about five minutes of thinking to poke a hole in every bit of 5G hype. There is no race for 5G deployment and the US, by definition, can’t be ahead or behind in the so-called race towards 5G. This is just another new broadband technology and the wireless carriers and other entrepreneurs will deploy 5G in the US when it makes economic sense. Instead of giving the wireless companies everything on their wish list, a better strategy by the FCC would be to make sure the country has enough fiber to make 5G work.

The Impending Cellular Data Crisis

There is one industry statistic that isn’t getting a lot of press – the fact that cellular data usage is more than doubling every two years. You don’t have to plot that growth rate very many years into the future to realize that existing cellular networks will be inadequate to handle the increased demand in just a few years. What’s even worse for the cellular industry is that the growth is the nationwide average. I have many clients who tell me there isn’t nearly that much growth at rural cellular towers – meaning there is likely even faster growth at some urban and suburban towers.

Much of this growth is a self-inflicted wound by the cellular industry. They’ve raised monthly data allowances and are often bunding in free video with cellular service, thus driving up usage. The public is responding to these changes by using the extra bandwidth made available to them.

There are a few obvious choke points that will be exposed with this kind of growth. Current cellphone technology limits the number of simultaneous connections that can be made from any given tower. As customers watch more video they eat up slots on the cell tower that otherwise could have been used to process numerous short calls and text messages. The other big chokepoint is going to be the broadband backhaul feeding each cell cite. When usage grows this fast it’s going to get increasingly expensive to buy leased backbone bandwidth – which explains why Verizon and AT&T are furiously building fiber to cell sites to avoid huge increases in backhaul costs.

5G will fix some, but not all of these issues. The growth is so explosive that cellular companies need to use every technique possible to make cell towers more efficient. Probably the best fix is to use more spectrum. Adding an additional spectrum to a cell site immediately adds capacity. However, this can’t happen overnight. Any new spectrum is only useful if customers can use it and it takes a number of years to modify cell sites and cellphones to work on a new spectrum. The need to meet growing demand is the primary reason that the CTIA recently told the FCC they need an eye-popping 400 MHz of new mid-range spectrum for cellular use. The industry painted that as being needed for 5G, but it’s needed now for 4G LTE.

Another fix for cell sites is to use existing frequency more efficiently. The most promising way to do this is with the use of MIMO antenna arrays – a technology to deploy multiple antennas in cellphones to combine multiple spectrum together to create a larger data pipe. MIMO technology can make it easier to respond to a request from a large bandwidth user – but it doesn’t relieve the overall pressure on a cell tower. If anything, it might do the exact opposite and let cell towers prioritize those that want to watch video over smaller users who might then be blocked from making voice calls or sending text messages. MIMO is also not an immediate fix and also needs to work through the cycle of getting the technology into cellphones.

The last strategy is what the industry calls densification, which is adding more cell sites. This is the driving force behind placing small cell sites on poles in areas with big cellular demand. However, densification might create as many problems as it solves. Most of the current frequencies used for cellular service travel a decent distance and placing cell sites too close together will create a lot of interference and noise between neighboring towers. While adding new cell sites adds additional local capacity, it also decreases the efficiency of all nearby cell sites using traditional spectrum – the overall improvement from densification is going to be a lot less than might be expected. The worse thing about this is that interference is hard to predict and is very much a local issue. This is the primary reason that the cellular companies are interested in millimeter wave spectrum for cellular – the spectrum travels a short distance and won’t interfere as much between cell sites placed closely together.

5G will fix some of these issues. The ability of 5G to do frequency slicing means that a cell site can provide just enough bandwidth for every user – a tiny slice of spectrum for a text message or IoT signal and a big pipe for a video stream. 5G will vastly expand the number of simultaneous users that can share a single cell site.

However, 5G doesn’t provide any additional advantages over 4G in terms of the total amount of backhaul bandwidth needed to feed a cell site. And that means that a 5G cell site will get equally overwhelmed if people demand more bandwidth than a cell site has to offer.

The cellular industry has a lot of problems to solve over a relatively short period of time. I expect that in the middle of the much-touted 5G roll-out we are going to start seeing some spectacular failures in the cellular networks at peak times. I feel sympathy for cellular engineers because it’s nearly impossible to have a network ready to handle data usage that doubles every two years. Even should engineers figure out strategies to handle five or ten times more usage, in only a few years the usage will catch up to those fixes.

I’ve never believed that cellular broadband can be a substitute for landline broadband. Every time somebody at the FCC or a politician declares that the future is wireless I’ve always rolled my eyes, because anybody that understands networks and the physics of spectrum can easily demonstrate that there are major limitations on the total bandwidth capacity at a given cell site, along with a limit on how densely cell sites can be packed in an area. The cellular networks are only carrying 5% of the total broadband in the country and it’s ludicrous to think that they could be expanded to carry most of it.

The Slow Deployment of 5G

Somebody asked me a few days ago why I write so much about 5G. My response is that I am intrigued by the 5G hype. The major players in the industry have been devoting big dollars to promote a technology that is still mostly vaporware. The most interesting thing about 5G is how politicians, regulators and the public have bought into the hype. I’ve never seen anything like it. I can remember other times when the world was abuzz over a new technology, but this was usually a reaction to an actual technology you could buy like the first laptop computers, the first iPhone and the first iPod.

Anybody that understands our industry knew that it will take a number of years to roll out any major new technology, particularly a wireless technology since wireless behaves differently in the field compared to the lab. We’re only a year past the release of 5G standards, and it’s unrealistic to think those standards could be translated into operation hardware and software systems in such a short time. You only have to look back at the history of 4G, which started as slowly as 5G and which finally had the first fully-compliant 4G cell site late last year.  It’s going to take just as long until we see a fully functional 5G cell site. What we will see, over time, is the incremental introduction of some of the aspects of 5G as they get translated from lab to the field. That rollout is further complicated for cellular use by the timeline needed to get 5G-ready handsets into peoples’ hands.

This blog was prompted by a Verizon announcement that 5G mobile services will be coming to 30 cities later this year. Of course, the announcement was short on details, because those details would probably be embarrassing for Verizon. I would expect that the company will introduce a tiny few aspects of 5G into the cell sites in business districts of major cities and claim that as a 5G roll-out.

What does that a roll-out this year mean for cellular customers? There are not yet any 5G capable cellphones. Both AT&T and Verizon have been working with Samsung to introduce a 5G version of their S10 phone later this year. Verizon has also been reported to be working with Lenovo for a 5G modular upgrade later this year. I’m guessing these phones are going to come with a premium price tag for the early adaptors willing to pay for 5G bragging rights. These phones will only work as 5G from the handful of cell sites with 5G gear – and that will only be for a tiny subset of the 5G specifications. I remember when one of my friends bought one of the first 4G phones and crowed about how it worked in downtown DC. At the time I told him his great performance was because he was probably the only guy using 4G – and sure enough, his performance dropped as others joined the new technology.

On the same day that I saw this Verizon announcement I also saw a prediction by Cisco that only 3% of cellular connections will occur over a 5G network by the end of 2022. This might be the best thing I’ve seen that pops the 5G hype. Even for folks buying the early 5G phones, there will be a dearth of cell sites around the country that will work with 5G for a number of years. Anybody who understands the lifecycle of cellular upgrades agrees with the Cisco timeline. It takes years to work through the cycle of upgrading cell sites, upgrading handsets and then getting those handsets to the public.

The same is true for the other technologies that are also being called 5G. Verizon made a huge splash just a few months ago about introducing 5G broadband using millimeter wave spectrum in four cities. Even at the time of that announcement, it was clear that those radios were not using the 5G standard, and Verizon quietly announced recently that they were ceasing those deployments while they wait for actual 5G technology. Those deployments were actually a beta test of millimeter wave radios, not the start of a rapid nationwide deployment of 5G broadband from poles.

AT&T had an even more ludicrous announcement at the end of 2018 where they announced 5G broadband that involved deployment of WiFi hotspots that were supposedly fed by 5G. However, this was a true phantom product for which they had no pricing and that nobody could order. And since no AT&T cell sites have been upgraded to 5G, one had to wonder how this involved any 5G technology. It’s clear this was technology roll-out by press release only so that they could have the bragging rights of saying they were the first ones to have 5G.

The final announcement I saw on that same day was one by T-Mobile saying they would begin deploying early 5G in cell sites in 2020. But the real news is that they aren’t planning on charging any more for any extra 5G speeds or features.

I come back to my original question about why I write about 5G so often. A lot of my clients ask me if they should be worried about 5G and I don’t have an answer for them. I can see that actual 5G technology is going to take a lot longer to come to market than the big carriers would have you believe. But I look at T-Mobile’s announcement on price and I also have to wonder what the cellular companies will really do once 5G works. Will AT&T and Verizon both spend billions to put 5G small cells in residential neighborhoods if it doesn’t drive any new cellular revenues? I have to admit that I’m skeptical – we’re going to have to wait to see what the carriers do rather than listen to what they say.

5G For Rural America?

FCC Chairman Ajit Pai recently addressed the NTCA-The Rural Broadband Association membership and said that he saw a bright future for 5G in rural America. He sees 5G as a fixed-wireless deployment that fits in well with the fiber deployment already made by NTCA members.

The members of NTCA are rural telcos and many of these companies have upgraded their networks to fiber-to-the-home. Some of these telcos tackled building fiber a decade or more ago and many more are building fiber today using money from the ACAM program – part of the Universal Service Fund.

Chairman Pai was talking to companies that largely have been able to deploy fiber, and since Pai is basically the national spokesman for 5G it makes sense that he would try to make a connection between 5G and rural fiber. However, I’ve thought through every business model for marrying 5G and rural fiber and none of them make sense to me.

Consider the use of millimeter wave spectrum in rural America. I can’t picture a viable business case for deploying millimeter wave spectrum where a telco has already deployed fiber drops to every home. No telco would spend money to create wireless drops where they have already paid for fiber drops. One of the biggest benefits from building fiber is that it simplifies operations for a telco – mixing two technologies across the same geographic footprint would add unneeded operational complications that nobody would tackle on purpose.

The other business plan I’ve heard suggested is to sell wholesale 5G connections to other carriers as a new source of income. I also can’t imagine that happening. Rural telcos are going to fight hard to keep out any competitor that wants to use 5G to compete with their existing broadband customers. I can’t imagine a rural telco agreeing to provide fiber connections to 5G transmitters that would sit outside homes and compete with their existing broadband customers, and a telco that lets in a 5G competitor would be committing economic suicide. Rural business plans are precarious, by definition, and most rural markets don’t generate enough profits to justify two competitors.

What about using 5G in a competitive venture where a rural telco is building fiber outside of their territory? There may come a day when wireless loops have a lower lifecycle cost than fiber loops. But for now, it’s hard to think that a wireless 5G connection with electronics that need to be replaced at least once a decade can really compete over the long-haul with a fiber drop that might last 50 or 75 years. If that math flips we’ll all be building wireless drops – but that’s not going to happen soon. It’s probably going to take tens of millions of installations of millimeter wave drops until telcos trust 5G as a substitute for fiber.

Chairman Pai also mentioned mid-range spectrum in his speech, specifically the upcoming auction for 3.5 GHz spectrum. How might mid-range spectrum create a rural 5G play that works with existing fiber? It might be a moot question since few rural telcos are going to have access to licensed spectrum.

But assuming that telcos could find mid-range licensed spectrum, how would that benefit from their fiber? As with millimeter wave spectrum, a telco is not going to deploy this technology to cover the same areas where they already have fiber connections to homes. The future use of mid-range spectrum will be the same as it is today – to provide wireless broadband to customers that don’t live close to fiber. The radios will be placed on towers, the taller the better. These towers will then make connections to homes using dishes that can communicate with the tower.

Many of the telcos in the NTCA are already deploying this fixed wireless technology today outside of their fiber footprint. This technology benefits from having towers fed by fiber, but this rarely the same fiber that a telco is using to serve customers. In most cases this business plan requires extending fiber outside of the existing service footprint – and Chairman Pai said specifically that he saw advantage for 5G from existing fiber.

Further, it’s a stretch to label mid-range spectrum point-to-multipoint radio systems as 5G. From what numerous engineers have told me, 5G is not going to make big improvements over the way that fixed wireless operates today. 5G will add flexibility for the operator to fine-tune the wireless connection to any given customer, but the 5G technology won’t inherently increase the speed of the wireless broadband connection.

I just can’t find any business plan that is going to deliver 5G in rural America that takes advantage of the fiber that the small telcos have already built. I would love to hear from readers who might see a possibility that I have missed. I’ve thought about this a lot and I struggle to find the benefits for 5G in rural markets that Chairman Pai has in mind. 5G clearly needs a fiber-rich environment – but companies who have already built rural fiber-to-the-home are not going to embrace a second overlay technology or openly allow competitors onto their networks.

AT&T’s 5G Strategy

AT&T recently described their long-term 5G strategy using what they call the 3 pillars of 5G – the three areas where the company is putting their 5G focus. The first pillar is a concentration on 5G cellular, and the company’s goal is to launch a 5G-based cellular service, with some cities coming on board in the second half of 2020. This launch will use frequencies in the sub-6 GHz range. This admission that there won’t be any AT&T 5G until at least 2020 contradicts the AT&T marketing folks who are currently trying to paint the company’s 4G LTE as pre-5G.

The biggest problem for the public will be getting a 5G cellphone. AT&T is working with Samsung to hopefully launch two phones later this year that have some 5G capability. As always with a new generation of wireless technology, the bottleneck will be in handsets. The cell phone makers can’t just make generic 5G phones – they have to work with the carriers to be ready to support the spectific subset of 5G features that are released. You might recall that the 5G cellular specification contains 13 improvements, and only the first generation of a few of those will be included in the first generation 5G cell sites. Cellphone manufacturers will also have to wrestle with the fact that each big cellular carrier will introduce a different set of 5G features.

This is a real gamble for cellphone makers because a 5G phone will become quickly obsolete. A 5G phone sold in late 2019 probably won’t include all of the 5G features that will be on the market by late 2020 – and this is likely to be true for the next 3 or 4 years as the carriers roll out incremental 5G improvements. It’s also a gamble for customers because anybody that buys an early 5G cellphone will have early bragging rights, but those cool benefits can be out of date in six months. I think most people will be like me and will wait a few years until the 5G dust settles.

AT&T’s second pillar is fixed wireless. This one is a head-scratcher because they are talking about the fixed cellular product they’ve already been using for several years – and that product is not 5G. This is the product that delivers broadband to homes using existing low-band cellular frequencies. This is not the same as Verizon’s product that delivers hundreds of megabits per second but is instead a product that delivers speeds up to 50 Mbps depending upon how far a customer lives from a cell tower – with reports that most households are getting 15 Mbps at best. This is the product that AT&T is mostly using to satisfy its CAF II requirements in rural America. All of the engineers I’ve talked to don’t think that 5G is going to materially improve this product.

The final pillar of AT&T’s strategy is edge computing. What AT&T means by this is to put fast processors at customer sites when there is the need to process low-latency, high-bandwidth data. Like other carriers, AT&T has found that not everything is suited for the cloud and that trying to send big data to and from the cloud can create a bandwidth bottleneck and add latency. This strategy doesn’t require 5G and AT&T has already been deploying edge routers. However, 5G will enhance this ability at customer sites that need to connect a huge number of devices simultaneously. 5G can make it easier to connect to a huge number of IoT devices in a hospital or to 50,000 cell phones in a stadium. The bottom line is that the migration to more edge computing is not a 5G issue and applies equally to AT&T’s fiber customers.

There is really nothing new in the three-pillar announcement and AT&T has been talking about all three applications from some time – but the announcement does highlight the company’s focus for stockholders.

In what was mostly a dig at Verizon, AT&T’s CEO Randall Stephenson did hold out the possibility of AT&T following Verizon into the 5G fixed wireless local loop using millimeter wave spectrum – however, he said such a product offering is probably three to five years into the future. He envisions the product as an enhancement to AT&T’s fiber products, not necessarily a replacement. He emphasized that AT&T is happy with the current fiber deployments. He provided some new statistics on a recent earnings call and said the company is seeing customer penetration rates between 33% and 40% within 18 months of new fiber deployment and penetration around 50% after three years. Those are impressive statistics because AT&T’s fiber deployments have been largely in urban areas competing with the big cable companies.

A year ago, Stephenson said that getting sufficient backhaul was his number one concern with deploying high-bandwidth wireless. While he hasn’t repeated that recently, it fits in with his narrative of seeing millimeter wave radio deployments in the 3-5 year time frame. The company recently released a new policy paper on its AirGig product that says that the product is still under development and might play well with 5G. AirGig is the mysterious wireless product that shoots wireless signals along power lines and somehow uses the power lines to maintain focus of the signal. Perhaps the company is seeing a future path for using AirGig as the backhaul to 5G fixed wireless deployments.

Windstream Turns Focus to Wireless

Windstream CEO Tony Thomas recently told investors that the company plans to stress wireless technology over copper going into the future. The company has been using point-to-point wireless to serve large businesses for several years. The company has more recently been using fixed point-to-multipoint wireless technology to satisfy some of it’s CAF II build-out requirements.

Thomas says that the fixed wireless technology blows away what could be provided over the old copper plant with DSL. In places with flat and open terrain like Iowa and Nebraska the company is seeing rural residential broadband speeds as fast as 100 Mbps with wireless – far faster than can be obtained with DSL.

Thomas also said that the company is also interested in fixed 5G deployments, similar to what Verizon is now starting to deploy – putting 5G transmitters on poles to serve nearby homes. He says the company is interested in the technology in places where they are ‘fiber rich’. While Windstream serves a lot of extremely rural locations, there also serve a significant number of towns and small cities in their incumbent service areas that might be good candidates for 5G.

The emphasis on wireless deployments puts Windstream on the same trajectory as AT&T. AT&T has made it clear numerous times to the FCC that they company would like to tear down rural copper wherever it can to serve customers with wireless. AT&T’s approach differs in that AT&T will be using its licensed cellular spectrum and 4G LTE in rural markets while Windstream would use unlicensed spectrum like various WISPs.

This leads me to wonder if Windstream will join the list of big telcos that will largely ignore its existing copper plant moving into the future. Verizon has done it’s best to sell rural copper to Frontier and seems to be largely ignoring its remaining copper plant – it’s the only big telcos that didn’t even bother to chase the CAF II money that could have been used to upgrade rural copper.

The new CenturyLink CEO made it clear that the company has no desire to make any additional investments that will earn ‘infrastructure returns’, meaning investing in last mile networks, both copper and fiber. You can’t say that Frontier doesn’t want to continue to support copper, but the company is clearly cash-stressed and is widely reported to be ignoring needed upgrades and repairs to rural copper networks.

The transition from copper to wireless is always scary for a rural area. It’s great that Windstream can now deliver speeds up to 100 Mbps to some customers. However, the reality of wireless networks are that there are always some customers who are out of reach of the transmitters. These customers may have physical impediments such as being in a valley or behind a hill and out of line-of-sight from towers. Or customers might just live to far away from a tower since all of the wireless technologies only work for some fixed distance from a tower, depending upon the specific spectrum being used.

It makes no sense for a rural telco to operate two networks, and one has to wonder what happens to the customers that can’t get the wireless service when the day comes when the copper network gets torn down. This has certainly been one of the concerns at the FCC when considering AT&T’s requests to tear down copper. The current FCC has relaxed the hurdles needed to tear down copper and so this situation is bound to arise. In the past the telcos had carrier of last-resort obligations for anybody living in the service area. Will they be required to somehow get wireless signal to those customers that fall between the cracks? I doubt that anybody will force them to do so. It’s not far-fetched to imagine customers living within a regulated telcos service area who can’t get telephone or broadband service from the telco.

Customers in these areas also have to be concerned with the future. We have wide experience that the current wireless technologies don’t last very long. We’ve seen electronics wear out and become functionally obsolete within seven years. Will Windstream and the other telcos chasing the wireless technology path dedicate enough capital to constantly replace electronics? We’ll have to wait for that answer – but experience says that they will cut corners to save money.

I also have to wonder what happens to the many parts of the Windstream service areas that are too hilly or too wooded for the wireless technology. As the company becomes wireless-oriented will they ignore the parts of the company stuck with copper? I just recently visited some rural counties that are heavily wooded, and which were told by local Windstream staff that the upgrades they’ve already seen on copper (which did not seem to make much difference) were the last upgrades they might ever see. If Windstream joins the other list of big telcos that will ignore rural copper, then these networks will die a natural death from neglect. The copper networks of all of the big telcos are already old and it won’t take much neglect to push these networks into the final death spiral.

Can Cable Fight 5G?

The big cable companies are clearly worried about 5G. They look at the recently introduced Verizon 5G product and they understand that they are going to see something similar over time in all of their metropolitan markets. Verizon is selling 5G broadband – currently at 300 Mbps second, but promised to get faster in the future – for $70 standalone or for $50 for those with Verizon cellular.

This is the nightmare scenario for them because they have finally grown to the point where they are approaching a near monopoly in most markets. They have successfully competed with DSL and quarter after quarter have been taking DSL customers from the telcos. In possibly the last death knell for DSL, both Comcast and Charter recently increased speeds of their base products to at least 200 Mbps. Those speeds makes it hard for anybody to justify buying DSL at 50 Mbps or slower.

The big cable companies have started to raise broadband rates to take advantage of their near-monopoly situation. Charter just recently raised bundled broadband prices by $5 per month – the biggest broadband price increase I can remember in a decade or more. Last year a major Wall Street analyst advised Comcast that their basic broadband price ought to be $90.

But now comes fixed 5G. It’s possible that Verizon has found a better bundle than the cable companies because of the number of households that already have cellphones. It’s got to be tempting to homes to buy fast broadband for only $50 per month in a bundle.

This fixed 5G competition won’t come over night. Verizon is launching 5G in urban markets where they already have fiber. Nobody knows how fast they will really implement the product, due mostly to distrust of a string of other Verizon hype about 5G. But over time the fixed 5G will hit markets. Assuming Verizon is successful, then others will follow them into the market. I’m already seeing some places where companies American Tower are building 5G ‘hotels’ at poles, which are vaults large enough to accommodate several 5G providers at the same location.

We got a clue recently about how the cable companies might fight back against 5G. A number of big cable companies like Comcast, Charter, Cox and Midco announced that they will be implementing the new 10 Gbps technology upgrade from CableLabs. These cable companies just recently introduced gigabit service using DOCSIS 3.1. It looks like the cable companies will fight against 5G with speed. It sounds like they will advertise speeds far faster than the 5G speeds and try to win the speed war.

But there is a problem with that strategy. Cable systems with the DOCSIS 3.1 upgrade can clearly offer gigabit speeds, but in reality cable company networks aren’t ready or able to deliver that much speed to everybody. Fiber networks can easily deliver a gigabit to every customer, and with an electronics upgrade can offer 10 Gbps to everybody, as is happening in parts of South Korea. But cable networks have an inherent weakness that makes gigabit speed problematical.

Cable networks are still shared networks and all of the customers in a node share the bandwidth. Most cable nodes are still large with 150 – 300 customers in each neighborhood node, and some with many more. If even a few customers start really use gigabit speeds then the speed for everybody else in the node will deteriorate. That’s the issue that caused cable networks to bog done in the evenings a decade ago. Cable companies fixed the problem then by ‘splitting’ the nodes, meaning that they build more fiber to reduce the number of homes in each node. If the cable companies want to really start pushing gigabit broadband, and even faster speeds, then they are faced with that same dilemma again and they will need another round, or even two rounds of node splits.

For now I have serious doubts about whether Comcast and Charter are even serious about their gigabit products. Comcast gigabit today costs $140 plus $10 for the modem. The prices are lower in markets where the company is competing against fiber, and customers can also negotiate contract deals to get the gigabit price closer to $100. Charter has similar pricing – in Oahu where there is competition they offer a gigabit for $105, and their price elsewhere seem to be around $125.

Both of these companies are setting gigabit prices far above Google’s Fiber’s $70 gigabit. The current cable company gigabit is not a serious competitor to Verizon’s $50 – $70 price for 300 Mbps. I have a hard time thinking the cable companies can compete on speed alone – it’s got to be a combination of speed and price. The cable companies can compete well against 5G if they are willing to price a gigabit at the $70 Verizon 5G price and then use their current $100+ price for 10 Gbps. That pricing strategy will cost them a lot of money in node upgrades, but they would be smart to consider it. The biggest cable companies have already admitted that their ultimate network needs to be fiber – but they’ve been hoping to milk the existing coaxial networks for another decade or two. Any work they do today to reduce node size would be one more step towards an eventual all-fiber network – and could help to stave off 5G.

It’s going to be an interesting battle to watch, because if we’ve learned anything in this industry it’s that it’s hard to win customers back after you lose them. The cable companies currently have most of the urban broadband customers and they need to act now to fight 5G – not wait until they have lost 30% of the market.

The Physics of Millimeter Wave Spectrum

Many of the planned used for 5G rely upon the use of millimeter wave spectrum, and like every wireless technology the characteristics of the spectrum defines both the benefits and limitations of the technology. Today I’m going to take a shot at explaining the physical characteristics of millimeter wave spectrum without using engineering jargon.

Millimeter wave spectrum falls in the range of 30 GHz to 300 GHz, although currently there has been no discussion yet in the industry of using anything higher than 100 GHz. The term millimeter wave describes the shortness of the radio waves which are only a few millimeters or less in length. The 5G industry is also using spectrum that is a little longer than millimeter waves size such as 24 GHz and 28 GHz – but these frequencies share a lot of the same operating characteristics.

There are a few reasons why millimeter wave spectrum is attractive for transmitting data. The millimeter spectrum has the capability of carrying a lot of data, which is what prompts discussion of using millimeter wave spectrum to deliver gigabit wireless service. If you think of radio in terms of waves, then the higher the frequency the greater the number of waves that are being emitted in a given period of time. For example, if each wave carries one bit of data, then a 30 GHz transmission can carry more bits in one second than a 10 GHz transmission and a lot more bits than a 30 MHz transmission. It doesn’t work exactly like that, but it’s a decent analogy.

This wave analogy also defines the biggest limitation of millimeter wave spectrum – the much shorter effective distances for using this spectrum. All radio waves naturally spread from a transmitter, and in this case thinking of waves in a swimming pool is also a good analogy. The further across the pool a wave travels, the more dispersed the strength of the wave. When you send a big wave across a swimming pool it’s still pretty big at the other end, but when you send a small wave it’s often impossible to even notice it at the other side of the pool. The small waves at millimeter length die off faster. With a higher frequency the waves are also closer together. Using the pool analogy, that means that the when waves are packed tightly together then can more easily bump into each other and become hard to distinguish as individual waves by the time they get to the other side of the pool. This is part of the reason why shorter millimeter waves don’t carry as far as other spectrum.

It would be possible to send millimeter waves further by using more power – but the FCC limits the allowed power for all radio frequencies to reduce interference and for safety reasons. High-power radio waves can be dangerous (think of the radio waves in your microwave oven). The FCC low power limitation greatly reduces the carrying distance of this short spectrum.

The delivery distance for millimeter waves can also be impacted by a number of local environmental conditions. In general, shorter radio waves are more susceptible to disruption than longer spectrum waves. All of the following can affect the strength of a millimeter wave signal:

  • Mechanical resonance. Molecules of air in the atmosphere naturally resonate (think of this as vibrating molecules) at millimeter wave frequencies, with the biggest natural interference coming at 24 GHz and 60 GHz.
  • Atmospheric absorption. The atmosphere naturally absorbs (or cancels out) millimeter waves. For example, oxygen absorption is highest at 60 GHz.
  • Millimeter waves are easily scattered. For example, the millimeter wave signal is roughly the same size as a raindrop, so rain will scatter the signal.
  • Brightness temperature. This refers to the phenomenon where millimeter waves absorb high frequency electromagnetic radiation whenever they interact with air or water molecules, and this degrades the signal.
  • Line-of-sight. Millimeter wave spectrum doesn’t pass through obstacles and will be stopped by leaves and almost everything else in the environment. This happens to some degree with all radio wavs, but at lower frequencies (with longer wavelengths) the signal can still get delivered by passing through or bouncing off objects in the environment (such as a neighboring house and still reach the receiver. However, millimeter waves are so short that they are unable to recover from collision with an object between the transmitter and receiver and thus the signal is lost upon collision with almost anything.

One interesting aspect of these spectrum is that the antennas used to transmit and receive millimeter wave spectrum are tiny and you can squeeze a dozen or more antenna into a square inch. One drawback of using millimeter wave spectrum for cellphones is that it takes a lot of power to operate multiple antennas, so this spectrum won’t be practical for cellphones until we get better batteries.

However, the primary drawback of small antennas is the small target area used to receive a signal. It doesn’t take a lot of spreading and dispersion of the signal to miss the receiver. For spectrum in the 30 GHz range the full signal strength (and maximum bandwidth achievable) to a receiver can only carry for about 300 feet. With greater distances the signal continues to spread and weaken, and the physics show that the maximum distance to get any decent bandwidth at 30 GHz is about 1,200 feet. It’s worth noting that a receiver at 1,200 feet is receiving significantly less data than one at a few hundred feet. With higher frequencies the distances are even less. For example, at 60 GHz the signal dies off after only 150 feet. At 100 GHz the signal dies off in 4 – 6 feet.

To sum all of this up, millimeter wave transmission requires a relatively open path without obstacles. Even in ideal conditions a pole-mounted 5G transmitter isn’t going to deliver decent bandwidth past about 1,200 feet, with the effective amount of bandwidth decreasing as the signal travels more than 300 feet. Higher frequencies mean even less distance. Millimeter waves will perform better in places with few obstacles (like trees) or where there is low humidity. Using millimeter wave spectrum presents a ton of challenges for cell phones – the short distances are a big limitation as well as the extra battery life needed to support extra antennas. Any carrier that talks about deploying millimeter wave in a way that doesn’t fit the basic physics is exaggerating their plans.