5G and Home IoT

I’ve been asked a lot recently about the potential future of 5G – everybody in the industry wants to understand the potential threat from 5G. One of the biggest proposed uses for 5G is to connect IoT devices to the cloud. Today I’m going to look at what that might mean.

It’s clear that 5G cellular will be the choice for connecting to outdoor IoT sensors. Sensors for farm equipment in rural areas or for outdoor weather and traffic sensors in urban areas are going to most easily handled by 5G cellular since the technology will eventually be everywhere. 5G is particularly suited for serving IoT devices due to frequency slicing where just the right amount of bandwidth, large or small, can be allocated to each small outdoor sensor. 5G has another interesting feature that will allow it to poll sensors on a pre-set schedule rather than have the sensor constantly trying to constantly connect – which will reduce power consumption at the sensor.

It’s clear that the cellular carriers also have their eye on indoor IoT devices. It’s harder to say that 5G will win this battle because today almost all indoor devices are connected using WiFi.

There are a couple of different 5G applications that might work in the indoor environment. The cellular carriers are going to make a pitch to be the technology of choice to connect small inside devices. In my home I can get a good cellular signal everywhere except in the old underground basement. There is no question that cellular signal from outside the home could be used to connect to many of the smaller bandwidth applications within the home. I can’t see any technical reason that devices like my Amazon Echo or smart appliances couldn’t connect to 5G instead of WiFi.

But 5G cellular has a number of hurdles issues to overcome to break into this market. I’m always going to have a wired broadband connection to my home, and as long as that connection comes from somebody other than one of the big cellular carriers I’m not going to want to use 5G if that means paying for another monthly subscription to a cellular provider. I’d much rather have my inside devices connected to the current broadband connection. I also want all of my devices on the same network for easy management. I want to use one hub to control smart light switches or other devices and want everything on the same wireless network. That means I don’t want some devices on WiFi and others on cellular.

One of the sales pitches for 5G is that it will be able to easily accommodate large numbers of IoT connections. Looking into the future there might come a time when there are a hundred or more smart devices in the house. It’s not that hard to picture the Jetson’s house where window shades change automatically to collect or block sunlight, where music plays automatically when I enter a room, where my coffee is automatically ready for me when I get out of bed in the morning. These things can be done today with a lot of effort, but with enough smart devices in a home these functions will probably eventually become mainstream.

One of the limitations of WiFi today is that it degrades in a busy environment. A WiFi network pauses each time it gets a new request for a connection, which is the primary reason it’s so hard to keep a good connection in a busy hotel or convention center.

However, the next generation with WiFi 6 is already anticipating these needs in the home. WiFi can adopt the same frequency slicing used by 5G so that only a small portion of a channel can be used to connect to a given device. Events can be scheduled on WiFi so that the network only polls certain sensors only periodically. The WiFi network might only interact with the smart coffee pot or the smart window shades when something needs to be done, rather than maintaining a constantly open channel. It’s likely that the next iterations of WiFi will become nearly as good as 5G for these functions within a closed home environment.

There is an even better solution that is also being discussed. There’s no reason that indoor routers can’t be built that use both WiFi and 5G frequencies. While the cellular companies are gobbling up millimeter wave spectrum, as long as there is an unlicensed slice of spectrum set aside for public use it will be possible to deploy both WiFi on mid-range frequencies and 5G on millimeter wave frequencies at the same time. This would blend the benefits of both technologies. It might mean using WiFi to control the smart coffee pot and indoor 5G to connect to the smart TV.

Unfortunately for the cellular carriers, these duel-function routers won’t need them. The same companies that make WiFi routers today can make combination 5G / WiFi routers that work with the full range of unlicensed spectrum – meaning no revenue opportunity for the cellular carriers. When I look at all of the issues I have a hard time seeing 5G cellular becoming a preferred technology within the home.

 

Millimeter Wave Cellular Service

Verizon is claiming to have the first real-world deployment of fast 5G cellular service. They launched an early version of what they are calling 5G in downtown Chicago and Minneapolis. This launch involves the deployment of millimeter wave spectrum.

A review of the cellular performance in FierceWireless showed exactly what was to be expected. This new service will only be available from a few cell sites in each city. For now the service can only be received using a Motorola Z3 handset that has been modified with a 5G Moto Mod adapter.

As would be expected, the millimeter wave broadband was fast, with peak speed measured at 500 Mbps. But also as expected, the coverage area is small, and millimeter wave spectrum is easily blocked by almost any impediment. Walking inside a building or around the corner of a building killed the broadband signal. The signal speed cut in half when received through a window. When not in the range of the millimeter wave signal the phone reverts to 4G, because Verizon is not yet close to implementing any actual 5G standards. This was not a trial of 5G technology – it’s a trial that shows that millimeter wave spectrum can carry a lot of data. That is especially easy to demonstrate when there are only one or two users on a given cell site.

Verizon announced a fee of $10 per month for the faster data speed, but almost immediately said the fee will be waived. This launch is another marketing gimmick letting Verizon get headlines proclaiming 500 Mbps cellular data speeds. The reviewer noted that the Verizon store in downtown Chicago was not ready to provide the product to anybody.

There are big issues with using millimeter wave spectrum for cellular service. I first ask what a cellphone user can do with that kind of speed. A cellphone can already be used to stream a video on a decent 4G connection. Other than software updates there isn’t any real need to download big files on a cellphone. It’s unlikely that the cellular carriers are going to let you tether speeds of that magnitude to a computer.

The other big issues will be the real-life limitations of millimeter wave spectrum outdoors. Since the frequency won’t pass through walls, this is strictly going to be an outdoor walking technology. As the FierceWireless review showed, it’s extremely easy to walk out of coverage. A cellular carrier will need to provide multiple cell sites in very close proximity in order to cover a given area.

It’s hard to think that there will ever be many subscribers willing to pay $10 more per month for a product with these limitations. How many people care about getting faster data speed outside, and only in areas of a city that are close to 5G transmitters? Would many cellular customers pay more so that they could save a few minutes per month to download software updates?

It’s hard to envision that the incremental revenues from customers will ever justify the cost of deploying multiple cell sites within close proximity of each other. T-Mobile already announced that they don’t plan to charge extra for 5G data when it’s available – there is no incentive to offer the product if there is no additional revenue.

What I found interesting is that Verizon also announced that they will be launching this same product in 20 additional urban markets soon, with 30 markets by the end of the year. The company will be using this launch to promote the new Galaxy S10 5G phone that will be able to utilize the millimeter wave spectrum. Verizon is touting the new service by saying that it will provide access to faster streaming, augmented-reality, gaming, and consumer and business applications.

If anything, this launch is a gimmick to sell more of the expensive 5G handsets. I wonder how many people will buy this phone hoping for faster service, only to realize that they have to stand outside close to a downtown millimeter wave cell site to use it. How many people want to go outside to enjoy faster gaming or augmented reality?

This is not to say that millimeter wave spectrum doesn’t have value, but that value will manifest when Verizon or somebody offers an indoor 5G modem that’s connected to a landline broadband connection. That would enable a cellphone to connect to faster gaming or augmented reality. That has some definite possibilities, but that is not cellular service, but rather an indoor broadband connection using a cellphone as the receiver.

I’m really starting to hate these gimmicks. Verizon and AT&T are both painting a false picture of 5G by making everybody think it will provide gigabit speeds everywhere – something that is not even listed as a goal of the 5G specifications. These gimmicks are pure marketing hype. The companies want to demonstrate that they are cutting edge. The gimmicks are aimed even more for politicians who the carriers are courting to support deregulation of broadband in the name of 5G. In the cease of this particular gimmick, Verizon might sell more Samsung 5G phones. But the gimmicks are just gimmicks and this trial is not a real product.

5G Claims for Rural America

There are a few hot-button topics that are the current favorite talking points at the FCC. T-Mobile and Sprint are pressing both the 5G and the rural broadband buttons with their merger request. The companies are claiming that if they are allowed to merge that they can cover 96% of America with a ‘deep, broad, and nationwide’ 5G network.

There are multiple technologies being referred to as 5G – wireless broadband loops and 5G cellular – and their claim doesn’t hold water for either application. In making the claim the companies want regulators to think that they are talking about wireless 5G loop like the technology that Verizon recently test-drove in Sacramento. That technology is delivering 300 Mbps broadband to those living close to the transmitters located on poles. The carriers are smart and know this is the kind of claim that will perk up the ears of regulators and politicians. A ubiquitous 300 Mbps rural broadband product would solve the rural digital divide.

T-Mobile and Sprint are not talking about 5G wireless loops. That technology requires two things to have any chance of success – sufficient neighborhood housing density and fiber backhaul. Rural areas with poor broadband generally lack fiber infrastructure built close to neighborhoods, so a 5G provider would have to build the needed fiber. I can’t imagine why anybody that builds fiber close to a neighborhood would then choose a squirrely wireless link that delivers less than a gigabit of speed instead of a direct fiber connection that can deliver 10 Gbps using today’s readily-available technology.

The other missing element in rural America is customer density. I read an article that says that each Verizon 5G wireless loop transmitter in Sacramento can see at least 20 potential customers. There are a number of industry analysts who think that even that is a hard business case to justify, so how can wireless loops ever work in rural American where a given transmitter will likely see only a few homes? I can foresee the 5G loop technology perhaps being used to deliver broadband to small rural subdivisions or small towns where the wireless link might be cheaper than stringing fiber. However, most of rural America is characterized by low density and homes that are far apart.

What T-Mobile and Sprint are really talking about is 5G rural cellular service. Sprint brings a unique asset to the merger – they are the only US cellular carrier using nationwide spectrum in the 850 MHz and the 2.5 GHz bands. T-Mobile is the only carrier currently using 600 MHz spectrum. The combined companies would have by far the biggest inventory of spectrum – giving them a big advantage in urban America.

But is there an advantage this spectrum can bring to rural broadband? The short answer is no. I say that because I don’t see 5G cellular being that important in rural America? There are several reasons why the T-Mobile and Sprint announcement makes little sense.

The biggest issue is that there is not going to be fully-functional 5G cell sites anywhere in the country for years. It’s likely to take most of the coming decade until we see cell sites that comply with all 13 of the major improvement goals listed in the 5G specifications. There will be a natural progression from 4G to 5G as the carriers implement upgrades over time – the same upgrade path we just saw with 4G, where the first fully-compliant 4G cell sites were finally implemented in late 2017.

The bigger question is if most rural cell sites need 5G. The new technology brings several major improvements to cellular. First will be the ability of one cell site to make up to 100,000 simultaneous connections to devices, up from several thousand connections today. This improvement will be mostly accomplished using frequency slicing. This allows a cell site to tailor the size of the broadband connection to each customer’s demand. For example, a connection to an IoT device might be set at a tiny fraction of a full cellular channel, thus freeing up the rest of that channel to serve other customers. Many rural cell sites won’t need this extra capacity. A rural cell site that serves a few hundred people at a time will continue to function well with 4G and won’t need the extra capacity.

5G also can be used to increase the speed of cellular broadband, with the goal in the standard to bring speeds to as fast as 100 Mbps. That is also unlikely to happen to any great degree in rural America. Speeds of 100 Mbps will be accomplished in urban areas by having multiple cell sites connect to a single cellphone. That will require densely packed small cell sites, which is something we are already starting to see in the busy parts of downtowns. It’s incredibly unlikely that the cellular companies are going to introduce small cell sites through rural America just to boost handset broadband speeds. Speeds are not likely to be much faster than 4G when a customer can see only a single tower.

The T-Mobile and Sprint claim is pure bosh. These companies are not going to be investing in fiber to bring 5G wireless loops to rural America. While a combined company will have more spectrum than the other carriers there is no immediate advantage for using 5G for rural cellular coverage . The T-Mobile and Sprint announcements are just pushing the 5G and the rural broadband hot-buttons because the topics resonate well with politicians who don’t understand the technology.

Why is the FCC Still Spinning Net Neutrality?

Chairman Ajit Pai and several other FCC Commissioners are still sticking with the story that regulation and net neutrality were quashing capital spending and innovation in the industry. This was the primary argument that justified killing net neutrality and gutting Title II regulation. Pai claimed that net neutrality was disrupting the big ISPs so much that they were reining in capital spending. Chairman Pai further claimed that killing regulation would free the big ISPs to expand their networks and to improve broadband coverage – he’s also repeatedly argued that without regulation that ‘the market’ would solve the rural broadband divide. Chairman Pai launched this story on his first day as Chairman and hasn’t let up – even now, over a year after the FCC successfully killed net neutrality and Title II regulation.

I find this to be unusual. Normally, when somebody in the industry wins a regulatory battle they quietly move on to the next issue, but at almost every public speaking opportunity the Chairman is still repeating these same talking points. I’ve been thinking about why Chairman Pai would keep harping on this argument long after he successfully killed net neutrality. I can think of a few reasons.

The Lawsuits. The FCC is probably concerned about the lawsuits challenging net neutrality. That order used some legal gymnastics in the FCC argument to kill Title II regulation. So perhaps Chairman Pai is continuing to make these same arguments as a way to let the courts know that keeping Title II regulation dead is still the number one priority of this FCC. I’m sure that if the courts challenge the FCC order that the agency will appeal, and so perhaps he continues to make the same arguments in anticipation of that coming court battle.

5G Deployment. In a very odd back-door way, the FCC has been using the net neutrality argument to grease the skids for an unregulated roll-out of 5G. The FCC’s message couldn’t be simpler: “all regulation bad / 5G and innovation good”.

I doubt that the average American understands the magnitude of what this FCC did when they killed Title II regulation. The agency basically killed its own authority to regulate what is probably the most important product it has ever regulated. Broadband is vital to both the economy and to people’s everyday lives. Yet this FCC thinks that their best regulatory role is to not regulate the industry in any manner. That means not regulating the many issues covered by net neutrality. It means not caring about consumer privacy on the web. It means not being concerned with runaway price increases and data caps. Killing Title II regulation means that future FCCs might have a hard time trying to reintroduce any regulation of broadband. The FCC handed the keys of the broadband industry to the monopoly ISPs and told them to run the industry as they see fit.

At the strong urging of the big wireless companies, this FCC wants to also make sure there are no restraints on 5G. It seems the only parties the FCC wants to regulate are those that might create roadblocks for 5G, such as cities that control rights-of-way.

Congress. Congress has the ability to permanently resolve the Title II and net neutrality battle. Congress could codify the current deregulated state-of-affairs or they could put Title II and net neutrality permanently back on the books. In fact, it’s the lack of Congressional action that led the FCC to kill net neutrality – they would much have preferred that Congress did it. But the Congress hasn’t undertaken any policy initiatives in the telecom industry since the Telecommunications Act of 1996, when most of us still were using dial-up.

There has been a lot of recent discussion in Congress on telecom issues and perhaps one of the reasons that Chairman Pai continues to lobby against net neutrality is to keep that position in front of Congress. However, it seems unlikely that any significant regulation is going to come out of a split Congress.

No Better Argument? Finally, and what is my favorite theory, perhaps the FCC doesn’t have any better argument about why they should be killing regulation. They’ve had years to come up with a story that the American people will buy, and the best they’ve come up with is that killing regulation will unleash innovation.

I think the FCC is afraid to touch the policy issues that the public really cares about. People in rural areas are adamant that the FCC finds a way to get them real broadband. The vast majority of broadband users are worried about being hacked and are worried about how the big ISPs are spying on them and selling their data. Everybody is concerned about the talk on Wall Street that encourages the big ISPs to significantly jack up rates. A large majority of the country cares about net neutrality and an open Internet. I can see why the FCC would rather stick with their story about how killing regulation unleashes innovation – because they are afraid of opening Pandora’s box to let all of these other issues into the open.

Predicting 5G CAPEX

If you ever want a bad headache, spend a few hours researching predictions about the future trajectory of capital spending by the big players in the telecom industry. It’s a topic worth following since the big ISPs all said that eliminating net neutrality and other regulation would unleash them to spend lavishly on new networks.

I was looking through projections over the past year that were forecasting capital spending for 2019. My main motivation in looking at these projections was to see if the big companies are actually planning on spending money yet on 5G. I figured the best way to get past all of the 5G hype is to follow the advice from the movie All the President’s Men, and “Follow the money”.

I started by looking at projections from the beginning of 2018. The headlines at that time centered around the big benefits to the industry from the Tax Cut and Jobs Act passed in December 2017. That legislation created an annual benefit to AT&T of $2.2 billion and a benefit to Verizon of $4 billion annually. At the beginning of 2018 industry analysts predicted the companies would roll those savings into increased capital spending. However, like with most big corporations those savings were not rolled back into the business.

There were rosy predictions at the start of last year about 2018 and 2019 capital spending. For example, the analysts at Deutsche Bank Research said in February 2018 that capital spending by the wireless carriers would increase by 14% in 2018 and even more into the future. It’s not hard to understand the enthusiasm of the analysts because the carriers were fueling this story. Early in 2018 Verizon said they would be investing $35 billion in 5G and AT&T said they would invest $40 billion.

This enthusiasm was fueled all last year by promises from AT&T and Verizon to roll out 5G by the end of 2018. In June the analysts at Oppenheimer raised forecasts of capital spending for 2019 by $18 billion by Verizon and $25 billion for AT&T. However, at the end of last year we saw the 5G announcements had been nothing but hype when AT&T announced an imaginary 5G product and Verizon installed fixed wireless in a few hundred homes.

As recently as the fourth quarter of last year a number of analysts were still predicting greater capital spending for wireless this year compared to 2018. For example, MoffettNathanson LLC predicted 2019 capital spending would be up 3.3% in 2019. Most other analysts made similar projections.

As the books closed for 2018 it became obvious that the big wireless companies hadn’t spent nearly as much as expected for the year. For example, Verizon actual spending was $1.5 billion less than their own initial projections. AT&T came in $3 billion less than projected. When real spending materializes you start to understand the complexity of these budgets. For example, AT&T said that part of the reason for lower capital spending was due to delays in the deployment of FirstNet, the nationwide public safety network. I sit here wondering why FirstNet was even included in their capital budget since it’s not being funded from AT&T’s own revenues, but 100% by taxpayers.

By the time I got to looking at 2019 the picture gets incredibly muddled. There are still those predicting 2% to 3% more capital spending for 2019. But we also see the big carriers admitting to their investors that there will be little spending on 5G this year. This first big capital expenditure in 5G will be for the core electronics for 5G cell sites called the RAN. It doesn’t look like there will be a 5G RAN available for a few more years. Both cellular carriers admit that they are not spending much on 4G LTE infrastructure other than working on cell site densification in urban areas through the deployment of small cell sites aimed at relieving pressure on the big tower cell sites.

I’ll be honest that all I got out of this reading was the headache because I still have no idea about how much money these big carriers will spend this year. This is probably not abnormal in an industry under so much flux and I would imagine there are still decisions being made inside these companies every day that will change capital spending even in this year. The one thing I came away with was a clear picture that there will be very little spending in 2019 on 5G, which means that the announcements of the carriers to have 5G cellular products by 2020 are clearly still hype.

But there are still those in the industry with rosy predictions. The research firm IDC predicts that spending on 5G core equipment will increase worldwide from $500 million this year to $26 billion per year in 2022. Ericsson is predicting that 5G will account for 50% of mobile subscriptions in the US by 2023 along with a worldwide penetration at 20% that year. That seems to be in conflict with Cisco which recently predicted worldwide 5G penetration of 3% by the end of 2022. I have no idea which of these predictions is right, but I now know that we can’t put any faith in predictions about 5G spending or deployment, so perhaps all of this reading was not in vain.

5G vs. WiFi

The big cellular carriers envision a future where every smart device is connected to their cellular networks rather than to WiFi. They envision every home having to pay a monthly subscription to maintain connectivity for their wired devices. They envision every new car and truck coming with a subscription to cellular service.

I notice that the cellular providers talk about generating IoT revenues, but they’re never specific that the real vision is for everybody to buy additional cellular subscriptions. Most IoT applications will be low-bandwidth yet the carriers have been spreading the false message that 5G is all about faster broadband. I just saw another ludicrous article yesterday predicting how 5G was going to bring mobile gigabit broadband to rural America – a pure fantasy that is being fed by the public relations machines at Verizon and AT&T.

We aren’t seeing much press about the most important aspect of the new 5G specifications – that each cell site will be able to make up to 100,000 simultaneous connections. This isn’t being done for cellphones. It’s rare these days except in a few over-crowded places for a cellular call not to be connected. Placing a few small cell sites at the busiest places in most cities could solve most cellular bottlenecks without an upgrade to 5G.

The 100,000 connections give the wireless carriers the tool that can make a connection to every smart TV, smart washer and dryer, home video camera, burglar alarm sensor and every other wired device in a home. The big carriers are launching a direct challenge to WiFi as the wireless technology of choice for connecting our devices.

AT&T and Verizon envision every home having a new $10, $20 or $30 subscription to keep all of the devices connected. They also envision becoming the repository of all IoT data – moving them in front of Google and others in the chase for collecting the big data that drives advertising revenues. This is something they definitely don’t talk about.

It doesn’t take much of a thought exercise to understand that 5G is not about faster cellular service. Cellular subscribers will gladly take faster cellular broadband, but they probably aren’t willing to pay more for it. T-Mobile is already making that clear by announcing that they won’t charge more for 5G. The carriers are not going to spend tens of billions to implement 5G cellular technology that doesn’t drive the new revenues needed to pay for it. 5G is about IoT, plain and simple.

Today all of our home devices use WiFi. While WiFi is far from perfect, it seems to do an adequate job in connecting to the video camera at the front door, the smart TV, and the sensors in various appliances and devices around the home. WiFi has a few major advantages over cellular broadband – it’s already in our homes and connected to our devices and doesn’t require an additional monthly subscription.

I think people will resist another forced subscription. HP recently reported that the vast majority of their customers that buy 4G LTE-enabled laptops disable the cellular connection almost as soon as the new computer is out of the box. In this day of cellphones, very few car owners sign-up for the cellular subscription for OnStar when the free trial expires. I know that I personally would not buy a home device that eventually needed another cellular subscription to function.

The cellular carriers make a valid point in saying that WiFi is already growing inadequate for busy homes. But there are already short-term and long-term fixes on the way. The short-term fix is the upcoming migration to WiFi 6 using the 802.11ax standard. The new WiFi will better use MIMO antennas, frequency slicing and other techniques to allow for prioritization of devices and a more reliable connection to multiple devices.

The ultimate indoor broadband network will be a combination of WiFi and millimeter wave, or even faster spectrum. Higher frequency spectrum could provide bandwidth for the devices that use big bandwidth while keeping other devices on mid-range spectrum WiFi – getting the best from both sets of spectrum. That combination will allow for the easy integration, without interference for the connection of gigabit devices and also of tiny sensors that only communicate sporadically.

This is not the future that AT&T and Verizon want, because this is a world controlled by consumers who buy the wireless boxes that best suit them. I envision a future indoor-only wireless network that won’t require licensed spectrum or a cellular subscription since the millimeter waves and other higher frequencies won’t pass outdoors through walls.

The cellular carriers will have a monopoly on the outdoor sensor market. They will undoubtedly make the connections to smart cars, to smart agriculture, and to outdoor smart city sensors. But I think they will have a huge uphill battle convincing households to pay another monthly subscription for something that can be done better using a few well-placed routers.

There’s No 5G Race

FCC Chairman Ajit Pai was recently quoted in the Wall Street Journal as saying, “In my view, we’re in the lead with respect to 5G”. Over the last few months I’ve heard this same sentiment expressed in terms of how the US needs to win the 5G race.

This talk is just more hype and propaganda from the wireless industry that is trying to create a false crisis concerning 5G in order to convince politicians that we need to break our regulatory traditions and give the wireless carriers everything they want. After all, what politician wants to be blamed for the US losing the 5G race? This kind of propaganda works. I was just at an industry trade association show and heard three or four people say that the US needs to win the 5G race.

There is no 5G race; there is no 5G war; there is no 5G crisis. Anybody that repeats these phrases is wittingly or unwittingly pushing the lobbying agenda of the big wireless companies. Some clever marketer at one of the cellular carriers invented the imaginary 5G race as a great way to emphasize the importance of 5G.

Stop and think about it for a second. 5G is a telecom technology, not some kind of military secret that some countries are going to have, while others will be denied. 5G technology is being developed by a host of multinational vendors that are going to sell it to anybody who wants it. It’s not a race when everybody is allowed to win. If China, or Germany, or Finland makes a 5G breakthrough and implements some aspect of 5G first, within a year that same technology will be in the gear available to everybody.

What I really don’t get about this kind of hype and rhetoric is that 5G is basically a new platform for delivering bandwidth. If we are so fired up to not lose the 5G race, then why have we been so complacent about losing the fiber race? The US is far down on the list of countries in terms of our broadband infrastructure. We’ve not deployed fiber optics nearly as quickly as many other countries, and worse we still have millions of households with no broadband and many tens of millions of others with inadequate broadband. That’s the race we need to win because we are keeping whole communities out of the new economy, whch hurts us all.

I hope that my readers don’t think I’m against 5G because I’m for any technology that improves access to bandwidth. What I’m against is the industry hype that paints 5G as the technology that will save our country – because it will not. Today, more than 95% of the bandwidth we use is carried over wires, and 5G isn’t going to move that needle much. There are clearly some bandwidth needs that only wireless will solve, but households and businesses are going to continue to rely on wires to move big bandwidth.

When I ask wireless engineers about the future they almost all have painted the same picture. Over time we will migrate to a mixture of WiFi and millimeter wave spectrum indoors to move around big data. When virtual and augmented reality was first mentioned a few years ago, one of the big promises we heard was for telepresence, where we’ll be able to meet and talk with remote people as if they are sitting with us. That technology hasn’t moved forward because it requires huge broadband beyond what today’s WiFi routers can deliver. Indoor 5G using millimeter wave spectrum will finally unleash gigabit applications within the home.

The current hype for 5G has only one purpose. It’s a slick way for the wireless carriers to push the government to take the actions they want. 5G was raised as one of the reasons to kill net neutrality. It’s being touted as a reason to gut most of the rest of existing telecom legislation. 5G is being used as the reason to give away huge blocks of mid-range spectrum exclusively to the big wireless companies. It’s pretty amazing that the government would give so much away for a technology that will roll out slowly over the next decade.

Please think twice before you buy into the 5G hype. It takes about five minutes of thinking to poke a hole in every bit of 5G hype. There is no race for 5G deployment and the US, by definition, can’t be ahead or behind in the so-called race towards 5G. This is just another new broadband technology and the wireless carriers and other entrepreneurs will deploy 5G in the US when it makes economic sense. Instead of giving the wireless companies everything on their wish list, a better strategy by the FCC would be to make sure the country has enough fiber to make 5G work.

The Impending Cellular Data Crisis

There is one industry statistic that isn’t getting a lot of press – the fact that cellular data usage is more than doubling every two years. You don’t have to plot that growth rate very many years into the future to realize that existing cellular networks will be inadequate to handle the increased demand in just a few years. What’s even worse for the cellular industry is that the growth is the nationwide average. I have many clients who tell me there isn’t nearly that much growth at rural cellular towers – meaning there is likely even faster growth at some urban and suburban towers.

Much of this growth is a self-inflicted wound by the cellular industry. They’ve raised monthly data allowances and are often bunding in free video with cellular service, thus driving up usage. The public is responding to these changes by using the extra bandwidth made available to them.

There are a few obvious choke points that will be exposed with this kind of growth. Current cellphone technology limits the number of simultaneous connections that can be made from any given tower. As customers watch more video they eat up slots on the cell tower that otherwise could have been used to process numerous short calls and text messages. The other big chokepoint is going to be the broadband backhaul feeding each cell cite. When usage grows this fast it’s going to get increasingly expensive to buy leased backbone bandwidth – which explains why Verizon and AT&T are furiously building fiber to cell sites to avoid huge increases in backhaul costs.

5G will fix some, but not all of these issues. The growth is so explosive that cellular companies need to use every technique possible to make cell towers more efficient. Probably the best fix is to use more spectrum. Adding an additional spectrum to a cell site immediately adds capacity. However, this can’t happen overnight. Any new spectrum is only useful if customers can use it and it takes a number of years to modify cell sites and cellphones to work on a new spectrum. The need to meet growing demand is the primary reason that the CTIA recently told the FCC they need an eye-popping 400 MHz of new mid-range spectrum for cellular use. The industry painted that as being needed for 5G, but it’s needed now for 4G LTE.

Another fix for cell sites is to use existing frequency more efficiently. The most promising way to do this is with the use of MIMO antenna arrays – a technology to deploy multiple antennas in cellphones to combine multiple spectrum together to create a larger data pipe. MIMO technology can make it easier to respond to a request from a large bandwidth user – but it doesn’t relieve the overall pressure on a cell tower. If anything, it might do the exact opposite and let cell towers prioritize those that want to watch video over smaller users who might then be blocked from making voice calls or sending text messages. MIMO is also not an immediate fix and also needs to work through the cycle of getting the technology into cellphones.

The last strategy is what the industry calls densification, which is adding more cell sites. This is the driving force behind placing small cell sites on poles in areas with big cellular demand. However, densification might create as many problems as it solves. Most of the current frequencies used for cellular service travel a decent distance and placing cell sites too close together will create a lot of interference and noise between neighboring towers. While adding new cell sites adds additional local capacity, it also decreases the efficiency of all nearby cell sites using traditional spectrum – the overall improvement from densification is going to be a lot less than might be expected. The worse thing about this is that interference is hard to predict and is very much a local issue. This is the primary reason that the cellular companies are interested in millimeter wave spectrum for cellular – the spectrum travels a short distance and won’t interfere as much between cell sites placed closely together.

5G will fix some of these issues. The ability of 5G to do frequency slicing means that a cell site can provide just enough bandwidth for every user – a tiny slice of spectrum for a text message or IoT signal and a big pipe for a video stream. 5G will vastly expand the number of simultaneous users that can share a single cell site.

However, 5G doesn’t provide any additional advantages over 4G in terms of the total amount of backhaul bandwidth needed to feed a cell site. And that means that a 5G cell site will get equally overwhelmed if people demand more bandwidth than a cell site has to offer.

The cellular industry has a lot of problems to solve over a relatively short period of time. I expect that in the middle of the much-touted 5G roll-out we are going to start seeing some spectacular failures in the cellular networks at peak times. I feel sympathy for cellular engineers because it’s nearly impossible to have a network ready to handle data usage that doubles every two years. Even should engineers figure out strategies to handle five or ten times more usage, in only a few years the usage will catch up to those fixes.

I’ve never believed that cellular broadband can be a substitute for landline broadband. Every time somebody at the FCC or a politician declares that the future is wireless I’ve always rolled my eyes, because anybody that understands networks and the physics of spectrum can easily demonstrate that there are major limitations on the total bandwidth capacity at a given cell site, along with a limit on how densely cell sites can be packed in an area. The cellular networks are only carrying 5% of the total broadband in the country and it’s ludicrous to think that they could be expanded to carry most of it.

The Slow Deployment of 5G

Somebody asked me a few days ago why I write so much about 5G. My response is that I am intrigued by the 5G hype. The major players in the industry have been devoting big dollars to promote a technology that is still mostly vaporware. The most interesting thing about 5G is how politicians, regulators and the public have bought into the hype. I’ve never seen anything like it. I can remember other times when the world was abuzz over a new technology, but this was usually a reaction to an actual technology you could buy like the first laptop computers, the first iPhone and the first iPod.

Anybody that understands our industry knew that it will take a number of years to roll out any major new technology, particularly a wireless technology since wireless behaves differently in the field compared to the lab. We’re only a year past the release of 5G standards, and it’s unrealistic to think those standards could be translated into operation hardware and software systems in such a short time. You only have to look back at the history of 4G, which started as slowly as 5G and which finally had the first fully-compliant 4G cell site late last year.  It’s going to take just as long until we see a fully functional 5G cell site. What we will see, over time, is the incremental introduction of some of the aspects of 5G as they get translated from lab to the field. That rollout is further complicated for cellular use by the timeline needed to get 5G-ready handsets into peoples’ hands.

This blog was prompted by a Verizon announcement that 5G mobile services will be coming to 30 cities later this year. Of course, the announcement was short on details, because those details would probably be embarrassing for Verizon. I would expect that the company will introduce a tiny few aspects of 5G into the cell sites in business districts of major cities and claim that as a 5G roll-out.

What does that a roll-out this year mean for cellular customers? There are not yet any 5G capable cellphones. Both AT&T and Verizon have been working with Samsung to introduce a 5G version of their S10 phone later this year. Verizon has also been reported to be working with Lenovo for a 5G modular upgrade later this year. I’m guessing these phones are going to come with a premium price tag for the early adaptors willing to pay for 5G bragging rights. These phones will only work as 5G from the handful of cell sites with 5G gear – and that will only be for a tiny subset of the 5G specifications. I remember when one of my friends bought one of the first 4G phones and crowed about how it worked in downtown DC. At the time I told him his great performance was because he was probably the only guy using 4G – and sure enough, his performance dropped as others joined the new technology.

On the same day that I saw this Verizon announcement I also saw a prediction by Cisco that only 3% of cellular connections will occur over a 5G network by the end of 2022. This might be the best thing I’ve seen that pops the 5G hype. Even for folks buying the early 5G phones, there will be a dearth of cell sites around the country that will work with 5G for a number of years. Anybody who understands the lifecycle of cellular upgrades agrees with the Cisco timeline. It takes years to work through the cycle of upgrading cell sites, upgrading handsets and then getting those handsets to the public.

The same is true for the other technologies that are also being called 5G. Verizon made a huge splash just a few months ago about introducing 5G broadband using millimeter wave spectrum in four cities. Even at the time of that announcement, it was clear that those radios were not using the 5G standard, and Verizon quietly announced recently that they were ceasing those deployments while they wait for actual 5G technology. Those deployments were actually a beta test of millimeter wave radios, not the start of a rapid nationwide deployment of 5G broadband from poles.

AT&T had an even more ludicrous announcement at the end of 2018 where they announced 5G broadband that involved deployment of WiFi hotspots that were supposedly fed by 5G. However, this was a true phantom product for which they had no pricing and that nobody could order. And since no AT&T cell sites have been upgraded to 5G, one had to wonder how this involved any 5G technology. It’s clear this was technology roll-out by press release only so that they could have the bragging rights of saying they were the first ones to have 5G.

The final announcement I saw on that same day was one by T-Mobile saying they would begin deploying early 5G in cell sites in 2020. But the real news is that they aren’t planning on charging any more for any extra 5G speeds or features.

I come back to my original question about why I write about 5G so often. A lot of my clients ask me if they should be worried about 5G and I don’t have an answer for them. I can see that actual 5G technology is going to take a lot longer to come to market than the big carriers would have you believe. But I look at T-Mobile’s announcement on price and I also have to wonder what the cellular companies will really do once 5G works. Will AT&T and Verizon both spend billions to put 5G small cells in residential neighborhoods if it doesn’t drive any new cellular revenues? I have to admit that I’m skeptical – we’re going to have to wait to see what the carriers do rather than listen to what they say.