T-Mobile Needs to Step Up

The T-Mobile Sprint merger became official on April 1. Since we are in the middle of the Covid-19 pandemic, the country needs T-Mobile to keep a few of the promises it made that were contingent upon the merger.

First, T-Mobile promised to offer wireless home broadband immediately after the merger for 50% of the people in the US, including many rural subscribers. T-Mobile envisions packaging excess cellular capacity as home broadband, at a reasonable price. The company does not envision putting fixed wireless antennas on homes like the products of AT&T and Verizon. The T-Mobile home product just requires a billing change where people pay less for cellular data usage inside their home. T-Mobile could effectuate this product almost immediately. This product could immediately help millions of homes that are struggling without affordable broadband right now.

The other T-Mobile promise addressed the digital divide and the company promised to serve 10 million homes that don’t have broadband today. This offer came with a promise to provide free devices to homes to receive the broadband. This is a digital divide product and could bring relief to poor households struggling with students trying to work from home. The product had a catch, in that annual usage was limited to 100 GB for free – but that’s enough usage to get students through the rest of this school year. As cellular plans in general go that’s not bad, meaning a monthly data allowance of over 8 GB per month in data allowance.

If T-Mobile is brave enough to launch these products immediately, they will reap mountains of marketing goodwill, which is exactly what the newly merged company needs. They will have created millions of fans who likely would become loyal to the company for helping them during this pandemic.

If T-Mobile doesn’t step up, ideally the FCC would turn the screws hard to make the company meet these promises now, rather than years from now. However, these plans involve broadband data and the feckless FCC has written themselves out of the broadband business. The FCC can huff and puff, but they no longer have the power to blow anybody’s house down.

Unfortunately, the history of the telecom industry is full of broken promises made as part of mergers. One of the biggest wireless mergers in the past was the 2005 merger of Sprint with Nextel. The companies had promised that the merger would allow them to bring Nextel’s popular ‘push to talk’ technology everywhere. The companies also promised they would blanket the country with cellular data, including rural America, using the 2.5 GHz spectrum. None of those promises ever came to pass – which was perhaps the first of many broken promises made for rural broadband. Like with most mergers, this merger also promised a lot of new jobs, but instead cut jobs.

There are plenty of other failed mergers. Consider the 2011 merger of Comcast with NBC Universal. Comcast promised it would offer affordably-priced standalone Internet everywhere – a product that was created but never marketed. Comcast promised to not discriminate against other programmers, but immediately disadvantaged Bloomberg by moving it to an obscure part of the channel lineup since it competed against the newly acquired MSNBC and CNBC. Comcast also promised to not discriminate against rival streaming services, but soon after the merger implemented its data caps, which applied to everybody’s video except Comcast’s.

One of the most blatant examples of carriers that tossed away pre-merger promises came after the 2006 merger of AT&T and BellSouth. Almost none of the promises made were kept. For example, AT&T promised to bring affordable broadband to all rural customers in the 22 states served by the two companies. Ask the folks in Mississippi and Alabama if this promise was fulfilled. AT&T has promised to build wireline networks in at least 30 cities outside its footprint and compete for voice and data – but this never happened. The companies promised to spend $16.5 billion to upgrade broadband in California and instead shut down expansion soon after the merger. The company claimed it would spend $1 billion wiring schools and libraries – another promise never met.

T-Mobile has an opportunity right not to become a legend in the industry by aggressively bringing affordable broadband to the students and workers who were sent home without broadband. This would distinguish them for the next decade as the carrier that met its promises and would likely propel them into the number one position in the industry. Let’s all hope they step up and do what they promised and do it quickly. Unfortunately, history has shown us that pre-merger promises are often forgotten before the ink is dry. But it would be so refreshing to see a company do what it promised, so we can hope.

FCC Reports on Poor Rural 4G Coverage

The FCC released a report in January that shows that the cellular networks of the major carriers underperform in rural America. This is no news to anybody who lives and works in a rural county. The tests allowed the FCC to conclude that the national coverage maps for 4G LTE are largely fiction in rural America.

The FCC conducted 25,000 tests in twelve states to verify the coverage maps of Verizon, T-Mobile, and US Cellular. The majority of tests were done in Arizona, New Mexico, Oklahoma, Vermont, Alabama and Montana. Speeds were tested from both stationary locations and in a moving vehicle. AT&T and Sprint weren’t tested because the maps they provided to the FCC showed only the combined upload and download speeds – something that is meaningless to test. The other three carriers reported what they claimed were actual upload and download speeds, shown separately.

The FCC undertook the testing in response to numerous complaints filed in the FCC’s docket for the Mobility Fund Phase II grants. The intention of this fund was to improve 4G coverage in rural areas with little or no cellular coverage. Smaller cellular carriers and the public complained to the FCC that the cellular data coverage claimed by the large cellular carriers was overstated. Small cellular carriers worried that the overstatements would stop them from asking for funding for areas that need upgrading. Local governments were worried that the overstated coverage meant that their areas wouldn’t see upgrades and they’d be doomed for another decade with poor cellular coverage.

The tests were conducted in areas where the carrier maps showed cellular data coverage. The results of the testing were rather bleak. 16% of all calls tried on Verizon were unable to make a data connection. The failures to connect were 23% on T-Mobile and 38% on US Cellular.

Overall, the three carriers met the FCC’s minimum requirement of 5 Mbps download for 4G only 62% of the time. That was 64% on Verizon, 63% on T-Mobile and only 45% for US Cellular. However, even within those reported results, the testers said that they experienced intermittent dropped calls on all three networks.

The FCC responded to these tests by revamping the reporting of cellular data speeds in the future, asking for far more granular speed data by location. The FCC also convened a group of experts to recommend to the FCC how to better test cellular speeds. Finally, the FCC issued an Enforcement Advisory on the accuracy of the cellular data on form 477. That’s a step short of issuing fines and likely will have little impact on the carriers. It doesn’t appear that any of them have pared back their national coverage maps that still claim coverage across most of rural America.

There are significant real-life implications of overstated cellular coverage maps. Just like with the RDOF grant program that will rely on faulty maps of landline broadband, poor maps of cellular coverage mean that many areas with overstated cellular coverage won’t be eligible for federal grants to help fix the problem.

The big downside is that many rural households have no 4G LTE coverage, or at best have slow and intermittent 4G data available. These are often the same areas where landline broadband is slow or non-existent. As hard as it is to live without good cellular coverage or good landline broadband, homes without both are cut off from the rest of the world. To make matters worse, there is still 3G coverage in a lot of rural America and all of the carrirs have plans to cut that dead over the next few years.

The FCC has revamped the Mobility Fund II grant program by doubling the amount of funding to $9 billion and renaming it as the 5G Fund. That’s a silly name because the goal of the program is to bring at least minimal 4G coverage to rural areas, not 5G. Remember that the grant program was originally aimed only at areas that showed no coverage by the carriers. Ideally the FCC would also  direct funding to the many areas where the carriers were lying about their coverage – but It’s doubtful that they have any meaningful maps of real 4G coverage.

Taking Advantage of the $9B 5G Fund

The FCC will be moving forward with the $9 billion 5G Fund – a new use of the Universal Service Fund – that will be providing money to expand cellular coverage to the many remote places in the US where 4G cell coverage is still spotty or nonexistent. There is a bit of urgency to this effort since the big cellular companies all want to shut down 3G within a year or two. This money will be made available to cellular carriers, but the funding still opens up possible benefits for other carriers and ISPs.

Some of this funding is likely to go towards extending fiber into rural places to reach cell towers, and that opens up the idea of fiber sharing. There are still a lot of places in the country that don’t have adequate fiber backhaul – the data pipes that bring traffic to and from the big hubs for the Internet. In the last six months alone I’ve worked with three different rural projects where lack of backhaul was a major issue. Nobody can consider building broadband networks in rural communities if the new networks can’t be connected to the web.

By definition, the 5G Fund is going to extend into rural places. If the FCC was maximizing the use of federal grant funds, they would demand that any fiber built with this new fund would be available to others at reasonable rates. This was one of the major provisions of the middle mile networks built a decade ago with stimulus funding. I know of many examples where those middle mile routes are providing backhaul today for rural fixed wireless and fiber networks. Unfortunately, I don’t see any such provisions being discussed in the 5G Fund – which is not surprising. I’m sure the big cellular companies have told the FCC that making them share fiber with others would be an inconvenience, so this idea doesn’t seem to be included in the 5G Fund plan.

I think there is a window of opportunity to partner with wireless carriers to build new fiber jointly. The cellular carriers can get their portion of new fiber funded from the 5G Fund and a partner can pick up new fiber at a fraction of the cost of building the route alone. This could be the simplest form of partnership where each party owns some pairs in a joint fiber.

This is worth considering for anybody already thinking about building rural fiber. The new routes don’t have to be backhaul fiber and could instead be a rural route that is part of a county-wide build-out or fiber being built by an electric cooperative. If somebody is considering building fiber into an area that has poor cellular coverage, the chances are that there will be 5G Fund money coming to that same area.

It has always been challenging to create these kinds of partnerships with AT&T and Verizon, although I am aware of some such partnerships. Both Sprint and T-Mobile have less rural coverage than the other carriers and might be more amenable to considering partnerships – but they might be consumed by the possibility of their merger.

There are a lot of other cellular carriers. The CTIA, the trade association for the larger cellular carriers, has thirty members that are facility-based cellular providers. The Competitive Carriers Association (CCA) has over one hundred members.

Ideally, a deal can be made to share fiber before the reverse auction for the 5G Fund. Any carrier that has a partner for a given route will have a bidding advantage since cost-sharing with a partner will lower the cost of building new fiber. It might be possible to find partnerships after the auction, but there could be restrictions on the newly built assets as part of the grants – we don’t know yet.

My recommendation is that if you are already planning to build rural fiber that you look around to see if one of the cellular carriers might be interested in serving the same area. Both parties can benefit through a cost-sharing partnership – but the real winners are rural customers that gain access to better cellular service and better broadband.

The Upcoming 5G Confusion

Until now the 5G industry has spread a lot of hype, but it hasn’t affected customers. That’s all starting to change as the cellular carriers are starting to offer 5G phones. Many customers who spend extra for 5G phones are going to quickly be frustrated and disappointed as they try to participate in the new 5G world.

Consider both AT&T and T-Mobile. Both companies are introducing both a low-band and a high-band 5G phone and customers who want 5G will have to choose one of the two options because the carriers don’t offer a phone that handles both new sets of spectrum.

In AT&T’s case, the low-band phone will introduce 850 MHz spectrum while the high-band phone will use millimeter wave spectrum. The T-Mobile low-band phone will use 600 MHz spectrum with the high-band phone will use millimeter wave spectrum.

Customers buying any of these phones are likely to be disappointed. The high-band phones only work outdoors and when a customer is within range of a handful of millimeter wave hotspots, which are mostly in downtown areas of major cities. Unless somebody has a job that keeps them outside within a small downtown urban footprint, the new high-band phones will default to 4G LTE. Even where a customer is within range of the millimeter wave spectrum it’s been reported that the signal gets easily blocked when a customer turns a corner around a building or even sometimes when the customer’s body blocks the path to the cell site.

Customers of the low-band phones are also likely to be disappointed. The two new low-band spectrums being used are great at penetrating buildings, and so data coverage might improve indoors. However, low-band spectrum, by definition, doesn’t carry a lot of bandwidth. A customer with a low-band 5G phone will likely get data speeds similar to 4G LTE. That is predicated upon living or working close to cell sites that have been upgraded to the new low-band spectrum – because many cell sites won’t yet carry the new spectrum.

There might be a short period of time where a customer with a low-band phone sees better performance – but that will be because they will be one of the few users of the new spectrum. As the more people use the new spectrum bands, the performance will look like that in similar bands of spectrum. I remember how early customers with 4G LTE praised the fast speeds, but those fast speeds fell back to normal within a short period of time.

The real bang with low-band spectrum will come in a few years after the cellular carriers perfect and integrate dynamic spectrum sharing into the 5G architecture. This is one of the new 5G features that let the cellular carriers combine multiple frequencies into a single data path to a customer. Today, a customer with one of the low-band phones will either be using the new low-band spectrum or traditional 4G LTE spectrum – but not both at the same time. The other benefit of the lower spectrum bands is that the spectrum will travel farther from a cell site, albeit at slower speeds.

The new phones will be confusing to customers for another reason – customers won’t be able to use these new phones to change carriers. A phone that can receive AT&T’s 850 MHz spectrum is not going to receive T-Mobile’s 600 MHz spectrum. A customer changing carriers with one of the new phones is going to only get traditional 4G LTE at a different carrier. This is going to become the new norm for the next decade as the carriers start using drastically different bands of spectrum.

Unfortunately, the cellular companies aren’t being straight with customers and are touting these new phones as high-performance 5G. The phones are not yet 5G since they don’t incorporate the best new features of the 5G standards – instead, they are 4G LTE phones that are adding new choices of spectrum. Perhaps the new phones can be labeled as 4.1 G, but I think even that would be generous.

The other big problem with the first generation of phones is that they will be obsolete once the carriers start adding the new 5G functions. 5G has a lot of great features coming including dynamic spectrum sharing (combines multiple frequencies), frequency slicing (gives each customer a data connection to match what they are trying to do), and the ability to connect to more than one cellular tower. This is going to be a problem between now and the time that 5G is mature – any 5G phone already in use won’t be able to handle any new feature as it’s introduced. Every 5G phone sold for the next decade will almost instantly be obsolete in terms of not being able to use new features.

I’m not sure why anybody would shell out extra to buy a 5G phones today. There might be a few people that have a specific reason to use the new spectrum and who happen to live in the right place to be able to use it. However, the vast majority of people are going to be disappointed since they are likely to have paid extra for a phone that’s still going to be 4G LTE. I know people like bragging rights by having the latest tech toy – but somebody buying a 5G phone is more of a sucker than an innovator. They will have bought into the carriers’ 5G hype – hook, line, and sinker.

T-Mobile Offering Broadband Solutions

As part of the push to get approval for the proposed merger with Sprint, T-Mobile pledged that it will offer low-cost data plans, give free 5G to first responders and provide free broadband access to underserved households with school students. These offers are all dependent upon regulators and the states approving the merger.

The low-price broadband plans might be attractive to those who don’t use a lot of cellular data. The lowest-price plan offers 2 GB of data for $15 monthly. The price is guaranteed for 5 years and the data cap grows by 500 MB per year to reach 4 GB in the fifth year. The second plan offers 5 GB for $25 and also grows by 500 Mb per year to reach 7 GB by the fifth year. I assume adding voice and texting is extra.

The offer for free phones for first responders is just that. T-Mobile will offer free voice, texting, and data to first responders for 10 years. There will be no throttling of data and data will always get priority. The company estimates that this would save $7.7 billion nationwide for first responders over the ten years if they all switch to T-Mobile. Not surprisingly the other carriers are already unhappy with this offer, particularly AT&T which is busy building the nationwide FirstNet first responder network. This may be a somewhat hollow offer. The FirstNet network has some major advantages such as automatically interconnecting responders from different jurisdictions. But at least some local governments are going to be attracted to free cellular service.

The offer for school students is intriguing. For the next five years, the company is offering 100 GB per month of downloaded data to eligible student households. The company will also provide a free WiFi hotspot that converts the cellular data into WiFi for home use. T-Mobile estimates that roughly 10 million households would be eligible. Studies have shown that cost is the reason that many homes with students don’t have home broadband. In urban areas, the T-Mobile effort could largely eliminate the homework gap, at least for five years. That would give the country five years to find a more permanent solution. While T-Mobile would also help in rural America, many rural homes are not in range of a T-Mobile tower capable of delivering enough broadband to be meaningful. However, in many cases, this offer would be bringing broadband for homework to homes with no other broadband alternatives.

If the merger goes through, T-Mobile plans to mobilize the big inventory of 2.5 GHz spectrum owned by Sprint as well as activating 600 MHz spectrum. These are interesting spectrum, particularly the 600 MHz. This spectrum is great at penetrating buildings and can reach deep into most buildings. The spectrum also carries far, up to 10 miles from a transmitter. However, compared to higher frequencies, the 600 MHz spectrum won’t carry as much data. Further, data speeds decrease with distance from a cell sites and the data speeds past a few miles are likely to be pretty slow.

This plan makes me wonder how allowing millions of students onto the cellular network for homework will affect cell sites. Will some cell sites bog down when kids are all connected to the school networks to do homework?

I further wonder if the promise to offer free broadband to students also comes with a promise to supply enough backhaul bandwidth to poor neighborhoods to support the busy networks. Without good backhaul, the free bandwidth might be unusable at peak hours. I don’t mean to denigrate an offer that might mean a broadband solution for millions of kids – but I’ve also learned over the years that free doesn’t always mean good.

I’ve seen where a few states like New York are still against the merger, so there is no guarantee it’s going to happen. It sounds like the courts will have to decide. I suspect these offers will be withdrawn if the decision is made by courts rather than by the states.

A New Cellular Carrier?

One of the most interesting aspects of the proposed merger of Sprint and T-Mobile is that the agreement now includes selling some of Sprint’s spectrum to Dish Networks to enable them to become a 5G cellular provider. This arrangement is part of the compromise required by the Department of Justice to preserve industry competition when the major wireless carriers shrink from four to three.

This agreement would have Dish Networks paying $5 billion for the spectrum assets, which complement the spectrum already owned by Dish. The agreement also includes an MVNO agreement between Dish Networks and T-Mobile that would let Dish enter the cellular market immediately before having to build any network. As part of that arrangement, Dish would purchase Boost Mobile from T-Mobile for $1.4 billion, providing them with an immediate base of cellular customers.

Dish already owns spectrum valued at several billion dollars. The company has been under pressure from the FCC to deploy that spectrum, and Dish recently began building a nationwide narrowband network to support IoT sensors. The company admits they are not happy with the IoT sensor business plan but didn’t want to lose their spectrum. Perhaps the best aspect of this deal from Dish’s perspective is that they are being given a new time clock to use existing spectrum in a more profitable way.

This deal has plenty of critics who don’t believe that Dish can turn into a viable competitor. This includes numerous consumer groups as well as a group of state Attorney Generals who have filed to block the merger. The merger is far from a done deal and is going to court, although it has crossed the major hurdles of getting DOJ approval and informal approval from the FCC.

Dish Chairman Charlie Ergen says the company is ready to become the fourth facility-based cellular carrier in the market. He thinks that launching with a new 5G network will provide some advantages over carriers that will be upgrading older networks. The company faces some significant challenges such as gaining access to tower space in crowded markets. The other cellular carriers have also been busy and have invested significant amounts of capital in building fiber to support cellular small cell sites.

The challenge of building a new nationwide cellular network from scratch is intimidating. As a satellite provider, the company does not already operate an extensive landline network. The logistics of hiring the needed talent and constructing the core network infrastructure is a major challenge. A few years ago Dish had estimated the cost to build a nationwide cellular network at $10 billion. The company says they have already released an RFI and an RFP to start the process of hiring contractors to build the new network.

Ergen says the company could build the core network in 2020 and could construct a network to cover 70% of the homes in the country by 2023. As far as being competitive, Dish says they would enter the market with ‘disruptive’ pricing to capture market share.

Dish needs something like this if it is to survive. The company lost over 1.1 million satellite TV customers last year, a little over 10% of its customer base. It looks like cord cutting is accelerating this year and one has to wonder how long they will remain as a viable business.

Interestingly, Dish won’t be the only new competitor in the cellular market. Comcast recently spent over $1.7 billion on spectrum. The company has been reselling cellular service and offering low-price broadband as part of its bundle for the last few years. The company reporting hitting 1.2 million cellular customers at the beginning of this year. While Comcast is not likely to tackle building a nationwide network, they could become a formidable competitor in the urban markets where they are already the cable provider. Other cellular companies like Charter and Altice are considering a similar path.

Cellular Broadband Speeds – 2019

Opensignal recently released their latest report on worldwide cellular data speeds. The company examined over 139 billion cellphone connections in 87 countries in creating this latest report.

South Korea continues to have the fastest cellular coverage in the world with an average download speed of 52.4 Mbps. Norway is second at 48.2 Mbps and Canada third at 42.5 Mbps. The US was far down the list in 30th place with an average download speed of 21.3 Mbps. Our other neighbor Mexico had an average download speed of 14.9 Mbps. At the bottom of the list are Iraq (1.6 Mbps), Algeria (2.1 Mbps) and Nepal (4.4 Mbps). Note that these average speeds represent all types of cellular data connections including 2G and 3G.

Cellular broadband speeds have been improving raoidly in most countries. For instance, in the 2017 report, Opensignal showed South Korea at 37.5 Mbps and Norway at 34.8 Mbps. The US in 2017 was in 36th place at only 12.5 Mbps.

Earlier this year Opensignal released their detailed report about the state of mobile broadband in the United States. This report looks at speeds by carrier and also by major metropolitan area. The US cellular carriers have made big strides just since 2017. The following table compares download speeds for 4G LTE by US carrier for 2017 and 2019.

2019 2017
Download Latency Download Latency
AT&T 17.8 Mbps 57.8 ms 12.9 Mbps 63.8 ms
Sprint 13.9 Mbps 70.0 ms 9.8 Mbps 70.1 ms
T-Mobile 21.1 Mbps 60.6 ms 17.5 Mbps 62.8 ms
Verizon 20.9 Mbps 62.6 ms 14.9 Mbps 67.3 ms

Speeds are up across the board. Sprint increased speeds over the two years by 40%. Latency for 4G is still relatively high. For comparison, fiber-to-the-home networks have latency in the range of 10 ms and coaxial cable networks have latency between 25 – 40 ms. The poor latency in cellular networks is one of the reasons why browsing the web on a cellphone seems so slow. (the other reason is that cellphone browsers focus on graphics rather than speed).

Cellular upload speeds are still slow. In the 2019 tests, the average upload speeds were AT&T (4.6 Mbps), Sprint (2.4 Mbps), T-Mobile (6.7 Mbps) and Verizon (7.0 Mbps).

Speeds vary widely by carrier and city. The fastest cellular broadband market identified in the 2019 tests was T-Mobile in Grand Rapids, Michigan with an average 4G speed of 38.3 Mbps. The fastest upload speed was provided by Verizon in New York City at 12.5 Mbps. Speeds vary by market for several reasons. First, the carriers don’t deploy the same spectrum everywhere in the US, so some markets have less spectrum than others. Markets vary in speed due to the state of upgrades – at any given time cell sites are at different levels of software and hardware upgrades. Finally, markets also vary by cell tower density and markets that serve more customers for each tower are likely to be slower.

Many people routinely take speed tests for their home landline broadband connection. If you’ve not taken a cellular speed test it’s an interesting experience. I’ve always found that speeds vary significantly with each speed test, even when run back-to-back As I was writing this blog I took several speed tests that varied in download speeds between 12 Mbps and 23 Mbps (I use AT&T). My upload speeds also varied with a top speed of 3 Mbps, and one test that couldn’t maintain the upload connection and measured 0.1 Mbps on the test. While landlines broadband connections maintain a steady connection to an ISP, a cellphone establishes a new connection every time you try to download and speeds can vary depending upon the cell site and the channel your phone connects to and the overall traffic at the cell site at the time of connection. Cellular speeds can also be affected by temperature, precipitation and all of those factors that make wireless coverage a bit squirrelly.

It’s going to be a few years until we see any impact on the speed test results from 5G. As you can see by comparing to other countries, the US still has a long way to go to bring 4G networks up to snuff. One of the most interesting aspects of 5G is that speed tests might lose some of their importance. With frequency slicing, a cell site will size a data channel to meet a specific customer need. Somebody downloading a large software update should be assigned a bigger data channel with 5G than somebody who’s just keeping up with sports scores. It will be interesting to see how Opensignal accounts for data slicing.

5G Claims for Rural America

There are a few hot-button topics that are the current favorite talking points at the FCC. T-Mobile and Sprint are pressing both the 5G and the rural broadband buttons with their merger request. The companies are claiming that if they are allowed to merge that they can cover 96% of America with a ‘deep, broad, and nationwide’ 5G network.

There are multiple technologies being referred to as 5G – wireless broadband loops and 5G cellular – and their claim doesn’t hold water for either application. In making the claim the companies want regulators to think that they are talking about wireless 5G loop like the technology that Verizon recently test-drove in Sacramento. That technology is delivering 300 Mbps broadband to those living close to the transmitters located on poles. The carriers are smart and know this is the kind of claim that will perk up the ears of regulators and politicians. A ubiquitous 300 Mbps rural broadband product would solve the rural digital divide.

T-Mobile and Sprint are not talking about 5G wireless loops. That technology requires two things to have any chance of success – sufficient neighborhood housing density and fiber backhaul. Rural areas with poor broadband generally lack fiber infrastructure built close to neighborhoods, so a 5G provider would have to build the needed fiber. I can’t imagine why anybody that builds fiber close to a neighborhood would then choose a squirrely wireless link that delivers less than a gigabit of speed instead of a direct fiber connection that can deliver 10 Gbps using today’s readily-available technology.

The other missing element in rural America is customer density. I read an article that says that each Verizon 5G wireless loop transmitter in Sacramento can see at least 20 potential customers. There are a number of industry analysts who think that even that is a hard business case to justify, so how can wireless loops ever work in rural American where a given transmitter will likely see only a few homes? I can foresee the 5G loop technology perhaps being used to deliver broadband to small rural subdivisions or small towns where the wireless link might be cheaper than stringing fiber. However, most of rural America is characterized by low density and homes that are far apart.

What T-Mobile and Sprint are really talking about is 5G rural cellular service. Sprint brings a unique asset to the merger – they are the only US cellular carrier using nationwide spectrum in the 850 MHz and the 2.5 GHz bands. T-Mobile is the only carrier currently using 600 MHz spectrum. The combined companies would have by far the biggest inventory of spectrum – giving them a big advantage in urban America.

But is there an advantage this spectrum can bring to rural broadband? The short answer is no. I say that because I don’t see 5G cellular being that important in rural America? There are several reasons why the T-Mobile and Sprint announcement makes little sense.

The biggest issue is that there is not going to be fully-functional 5G cell sites anywhere in the country for years. It’s likely to take most of the coming decade until we see cell sites that comply with all 13 of the major improvement goals listed in the 5G specifications. There will be a natural progression from 4G to 5G as the carriers implement upgrades over time – the same upgrade path we just saw with 4G, where the first fully-compliant 4G cell sites were finally implemented in late 2017.

The bigger question is if most rural cell sites need 5G. The new technology brings several major improvements to cellular. First will be the ability of one cell site to make up to 100,000 simultaneous connections to devices, up from several thousand connections today. This improvement will be mostly accomplished using frequency slicing. This allows a cell site to tailor the size of the broadband connection to each customer’s demand. For example, a connection to an IoT device might be set at a tiny fraction of a full cellular channel, thus freeing up the rest of that channel to serve other customers. Many rural cell sites won’t need this extra capacity. A rural cell site that serves a few hundred people at a time will continue to function well with 4G and won’t need the extra capacity.

5G also can be used to increase the speed of cellular broadband, with the goal in the standard to bring speeds to as fast as 100 Mbps. That is also unlikely to happen to any great degree in rural America. Speeds of 100 Mbps will be accomplished in urban areas by having multiple cell sites connect to a single cellphone. That will require densely packed small cell sites, which is something we are already starting to see in the busy parts of downtowns. It’s incredibly unlikely that the cellular companies are going to introduce small cell sites through rural America just to boost handset broadband speeds. Speeds are not likely to be much faster than 4G when a customer can see only a single tower.

The T-Mobile and Sprint claim is pure bosh. These companies are not going to be investing in fiber to bring 5G wireless loops to rural America. While a combined company will have more spectrum than the other carriers there is no immediate advantage for using 5G for rural cellular coverage . The T-Mobile and Sprint announcements are just pushing the 5G and the rural broadband hot-buttons because the topics resonate well with politicians who don’t understand the technology.

City Authority in Rights-of-Way

The California Supreme Court just joined the fray in the battle over the placement of small cells and other wireless equipment in public rights-of-ways. Currently, there are numerous lawsuits challenging the FCC ruling that wireless carriers can put their devices anywhere in the public rights-of-way. The California lawsuit preceded that order and was asking if a City has the right to dictate the appearance of wireless electronics.

We’ve recently seen wireless carriers hanging some fairly hideous devices on poles. The FCC order allows them to hang devices as large as 28 cubic feet, and that’s large enough to hang devices that sprawl across the sightlines on poles. Cities look at some of the early examples of devices on poles and are fearful of the proliferation of similar devices as each large wireless carrier and others begin hanging small cells and 5G fixed wireless loop devices.

The original suit came from T-Mobile that claimed that San Francisco had no authority to set aesthetics requirements for wireless devices. It is an interesting challenge because government entities have been dictating aesthetics requirements for years – such as cell sites one sees all over Florida that are disguised to look like palm trees – but which never do.

My guess is that T-Mobile has been emboldened by the recent federal law that guarantees wireless carriers access to utility poles, light poles and other locations inside of public rights-of-way. The FCC order effectively tells municipalities that they can’t reject requests to place devices and I’m guessing T-Mobile hoped that meant that cities had no authority over them.

T-Mobile relied on language in section 7901 of the California public utilities code:

Telegraph or telephone corporations may construct lines of telegraph or telephone lines along and upon any public road or highway, along or across any of the waters or lands within this State, and may erect poles, posts, piers, or abutments for supporting the insulators, wires, and other necessary fixtures of their lines, in such manner and at such points as not to incommode the public use of the road or highway or interrupt the navigation of the waters. (I must admit that one of the reasons I like to read legal cases is the language used in laws. This one uses the term incommode which means to inconvenience or impede.)

T-Mobile interpreted that law to mean that they have the right to construct facilities as long as they don’t obstruct the transmission path. They further argued that San Francisco could not regulate anything that is not specifically allowed by this same language.

The courts disagreed with T-Mobile’s reading of the law. The courts said that a city has inherent local authority to determine the appropriate use of land within its jurisdiction. That authority includes the right to establish aesthetic conditions for land use. The Court said the case boiled down to whether Section 7901 somehow divested the city of that inherent authority.

The Courts also said that T-Mobile’s interpretation of the term incommode was incorrect, in that T-Mobile thought they could hang a wireless device anywhere as long as they didn’t impede public road use or the ability of other utilities to use the poles. The Courts said that incommoded generally means inconvenience and that the city could object to a pole placement if it inconvenienced the city in other ways such as generating noise, causing negative health consequences, or creating safety concerns.

While the California ruling was very specific and ruled that the City of San Francisco could require wireless carriers to meet aesthetic requirements, the ruling and the discussion in the decision can be interpreted as being directly in opposition of the FCC order that allows wireless carriers to place small cells anywhere they want, without city interference.

Lawsuits generally rely on precedents and judges often consider rulings made in other courts on similar issues. It seems likely that this California Supreme Court ruling is going to make it into the challenges to the FCC ruling that preempted local control over small cell placement. That FCC ruling loses its teeth if cities can consider things like public safety or the safety of technicians that work on poles.

Wireless carriers are currently acting as if the FCC order is a done deal, even as it is being challenged by numerous states and cities. I’ve heard several people refer to carrier behavior as a land grab, where the carriers are grabbing connection space on poles even when they have no immediate use for them – they are getting on poles before courts might make it harder to do so. This Supreme Court ruling makes it clear that the small cell issue is far from resolved and we’re probably going to be following this in courts for at least a few more years.

Another Rural Wireless Provider?

T-Mobile announced the start of a trial for a fixed wireless broadband product using LTE. The product is being marketed as “T-Mobile Home Internet”. The company will offer the product by invitation only to some existing T-Mobile cellular customers in “rural and underserved areas”. The company says they might connect as many as 50,000 customers this year. The company is marketing the product as 50 Mbps broadband, with a monthly price of $50 and no data cap. The company warns that speeds may be curtailed during times of network congestion.

The company further says that their ultimate goal is to offer speeds of up to 100 Mbps, but only if they are allowed to merge with Sprint and gain access to Sprint’s huge inventory of mid-range spectrum. They said the combination of the two companies would enable them to cover as many as 9.5 million homes with 100 Mbps broadband in about half of US zip codes.

There are positive aspects the planned deployment, but also a number of issues that make me skeptical. One positive aspect is that some of the spectrum used for LTE can better pass through trees compared to the spectrum used for the fixed wireless technology that is being widely deployed in the open plains and prairies of the Midwest and West. This opens up the possibility of bringing some wireless broadband to places like Appalachia – with the caveat that heavy woods are still going to slow down data speeds. It’s worth noting that this is still a line-of-sight technology and fixed LTE will be blocked by hills or other physical impediments.

The other positive aspect of the announced product is the price and lack of a data cap. Contrast this to the AT&T fixed LTE product that has a price as high as $70 along with a stingy 160 GB monthly cap, and with overage charges that can bring the AT&T price up to $200 per month.

I am skeptical of a number of the claims made or implied by the announcement. The primary concern is download speeds. Fixed LTE will be the same as any other fixed wireless product and speeds will decrease with the distance of a customer from the serving tower. In rural America distances can mount up quickly. LTE broadband is similar to rural cellular voice and works best where customers can get 4 or 5 bars. Anybody living in rural America understands that there are a lot more places with 1 or 2 bars of signal strength than of 4 or 5 bars.

The 50 Mbps advertised speed is clearly an ‘up-to’ speed and in rural America it’s doubtful that anybody other than those who live under a tower could actually get that much speed. This is one of the few times when I’ve seen AT&T advertise truthfully and they market their LTE product as delivering at least 10 Mbps speed. I’ve read numerous online reviews of the AT&T product and the typical speeds reported by customers range between 10 Mbps and 25 Mbps, with only a few lucky customers claiming speeds faster than that.

The online reviews of the AT&T LTE product also indicate that signal strength is heavily influenced by rain and can completely disappear during a downpour. Perhaps even more concerning are reports that in some cases speeds remain slow after a rain due to wet leaves on trees that must be scattering the signal.

Another concern is that T-Mobile is touting this as a solution for underserved rural America.  T-Mobile has far less presence in rural America than AT&T and Verizon and is on fewer rural cellular towers. This is evidenced by their claim that even after a merger with Sprint they’d only be seeing 9.5 million passings – that’s really small coverage for a nationwide cellular network. I’m a bit skeptical that T-Mobile will invest in connecting to more rural towers just to offer this product – the cost of backhaul to rural towers often makes for a lousy business case.

The claim also says that the product will have some aspects of both 4G and 5G. I’ve talked to several wireless engineers who have told me that they can’t see any particular advantage for 5G over 4G when deploying as fixed wireless. A carrier already opens up the available data path fully with 4G to reach a customer and 5G can’t make the spectrum perform any better. I’d love to hear from anybody who can tell me how 5G would enhance this particular application. This might be a case where the 5G term is tossed in for the benefit of politicians and marketing.

Finally, this is clearly a ploy to keep pushing for the merger with Sprint. The claim of the combined companies being able to offer 100 Mbps rural broadband has even more holes than the arguments for achieving 50 Mbps. However, Sprint does have a larger rural presence on rural towers today than T-Mobile, although I think the Sprint towers are already counted in the 9.5 million passings claim.

But putting aside all my skepticism, it would be great if T-Mobile can bring broadband to any rural customers that otherwise wouldn’t have it. Even should they not achieve the full 50 Mbps claim, many rural homes would be thrilled to get speeds at half that level. A wireless product with no data caps would also be a welcomed product. The timing of the announcement is clearly aimed at promoting the merger process with Sprint and I hope the company’s deployment plans don’t evaporate if the merger doesn’t happen.