When Will Small ISPs Offer Wireless Loops?

I wrote last week about what it’s going to take for the big wireless companies to offer 5G fixed wireless in neighborhoods. Their biggest hurdle is going to be the availability of fiber deep inside neighborhoods. Today I look at what it would take for fiber overbuilders to integrate 5G wireless loops into their fiber networks. By definition, fiber overbuilders already build fiber deep into neighborhoods. What factors will enable fiber overbuilders to consider using wireless loops in those networks?

Affordable Technology. Number one on the list is cheaper technology. There is a long history in the wireless industry where new technologies only become affordable after at least one big company buys a lot of units. Fifteen years ago the FCC auctioned LMDS and MMDS spectrum with a lot of hoopla and promise. However, these spectrum bands were barely used because no big companies elected to use them. The reality of the manufacturing world is that prices only come down with big volumes of sales. Manufacturers need to have enough revenue to see them through several rounds of technical upgrades and tweaks, which are always needed when fine-tuning how wireless gear works in the wild.

Verizon is the only company talking about deploying a significant volume of 5G fixed wireless equipment. However, their current first-generation equipment is not 5G compliant and they won’t be deploying actual 5G gear for a few years. Time will tell if they buy enough gear to get equipment prices to an affordable level for the rest of the industry. We also must consider that Verizon might use proprietary technology that won’t be available to others. The use of proprietary hardware is creeping throughout the industry and can be seen with gear like data center switches and Comcast’s settop boxes. The rest of the industry won’t benefit if Verizon takes the proprietary approach – yet another new worry for the industry.

Life Cycle Costs. Anybody considering 5G also needs to consider the full life cycle costs of 5G versus fiber. An ISP will need to compare the life cycle cost of fiber drops and fiber electronics versus the cost of the 5G electronics. There are a couple of costs to consider:

  • We don’t know what Verizon is paying for gear, but at the early stage of the industry my guess is that 5G electronics are still expensive compared to fiber drops.
  • Fiber drops last for a long time. I would expect that most of the fiber drops built twenty years ago for Verizon FiOS are still going strong. It’s likely that 5G electronics on poles will have to replaced or upgraded every 7 – 10 years.
  • Anybody that builds fiber drops to homes knows that over time that some of those drops are abandoned as homes stop buying service. Over time there can be a sizable inventory of unused drops that aren’t driving any revenue – I’ve seen this grow to as many as 5% of total drops over time.
  • Another cost consideration is maintenance costs. We know from long experience that wireless networks require a lot more tinkering and maintenance effort than fiber networks. Fiber technology has gotten so stable that most companies know they can build fiber and not have to worry much about maintenance for the first five to ten years. Fiber technology is getting even more stable as many ISPs are moving the ONTs inside the premise. That’s going to be a hard to match with 5G wireless networks with differing temperatures and precipitation conditions.

We won’t be able to make this cost comparison until 5G electronics are widely available and after a few brave ISPs suffer through the first generation of the technology.

Spectrum. Spectrum is a huge issue. Verizon and other big ISPs are going to have access to licensed spectrum for 5G that’s not going to be available to anybody else. It’s likely that companies like Verizon will get fast speeds by bonding together multiple bands of millimeter wave spectrum while smaller providers will be limited to only unlicensed spectrum bands. The FCC is in the early stages of allocating the various bands of millimeter wave spectrum, so we don’t yet have a clear picture of the unlicensed options that will be available to smaller ISPs.

Faster speeds. There are some fiber overbuilders that already provide a gigabit product to all customers, and it’s likely over time that they will go even faster. Verizon is reporting speeds in the first 5G deployments between 300 Mbps and a gigabit, and many fiber overbuilders are not going to want a network where speeds vary by local conditions, and from customer to customer. Wireless speeds in the field using millimeter wave spectrum are never going to be as consistently reliable and predictable as a fiber-based technology.

Summary. It’s far too early to understand the potential for 5G wireless loops. If the various issues can be clarified, I’m sure that numerous small ISPs will consider 5G. The big unknowns for now are the cost of the electronics and the amount of spectrum that will be available to small ISPs. But even after those two things are known it’s going to be a complex decision for a network owner. I don’t foresee any mad rush by smaller fiber overbuilders to embrace 5G.

Where Will 5G Find Fiber?

I was talking to one of my clients about 5G. This particular client is a fiber-overbuilder and they verified something I’ve suspected – they don’t plan to ever make any of their fiber available for a 5G provider wanting to deploy 5G small cell sites. They reason that 5G point-to-point radios, like Verizon is now launching, would compete directly with their retail broadband products and they can’t think of a scenario where they would assist a competitor to poach their own retail customers.

This is a break with the past because this client today provides fiber to a number of the big cellular towers and hopes to continue those sales. These are good revenue and help to offset the cost of building fiber to the towers. This leads me to ask the title question of this blog – where are the 5G providers going to find the needed fiber? A lot of the rosy predictions I’ve read for widespread 5G deployment assume that 5G providers will be able to take advantage of the fiber that’s already been deployed by others, and I’m not so sure that’s true.

I have no doubt that big backhaul fiber providers like Level 3 or Zayo will sell 5G connectivity where they have the capacity. However, much of their fiber network is not strategically located for 5G. First, 5G networks are going to need to get to numerous poles, and that requires fiber with existing access point. Much of the fiber built by companies like Level 3 was built to get to specific buildings or big cellular towers that anticipate the need for other access points. These fiber companies are also leery about tapping into fibers feed their largest customers, who often pay extra for guaranteed service. A lot of their fiber is underground and not easy to get to the needed pole connections.

Of more relevance is that these carriers are not going to own a lot of fiber that goes deep into neighborhoods where the 5G providers want to deploy. Most of the fiber built deep into residential neighborhoods has been built by fiber-to-the-premise overbuilders or cable companies. These companies use their fiber to sell retail broadband to residents and businesses. Fiber overbuilders, from Google Fiber down to the smallest municipal fiber network are not likely to sell fiber to the pole in neighborhoods where they are already a retail ISP.

The cable companies are not going to make their fiber available for 5G – they’ve made it clear that their future path lies in the DOCSIS 3.1 upgrades, including upgrading beyond gigabit speeds as needed. All of the major cable companies have said that have the ultimate end-game of fiber-to-the-premise. They’ve all cited 5G as one of the reasons they are increasing speeds and are not likely to sell access to a major competitor.

AT&T is the only other carriers with an extensive fiber network that goes deep into many neighborhoods. However, AT&T has been building FTTP connections in neighborhoods where they have fiber. For now, they don’t intend to mimic Verizon and are going to stick with FTTP rather than 5G. It would be tactically smart for AT&T to refuse to sell 5G connections to others. But AT&T is the hardest company in the industry to predict because they wear so many hats, and their retail fiber ISP business is in a different business silo than their wholesale fiber connection business – so who knows what they will do.

I don’t see a glut of existing fiber sitting waiting to sell to 5G providers. That seems to be the major hurdle for the rapid 5G deployment that the FCC, the White House and the cellular carriers have all been loudly touting. How many 5G companies are going to want to make the gigantic needed investment in fiber to get deep into neighborhoods?

I think the folks in Washington DC have gotten a false sense of the potential for 5G by seeing what Verizon is doing. But Verizon is taking advantage of the many billions of dollars of fiber they have already built over the years, and their 5G network is going to follow that fiber footprint. There are not many other companies with a glut of fiber that can be leveraged it in the same manner as Verizon.

Verizon has already announced that they will be passing roughly 11 million homes with fiber. They can be that specific because they know what’s close to their existing fiber. I doubt that they are going to expand anywhere else, just like they didn’t expand FiOS where the construction costs weren’t low. If Verizon can’t afford to deploy 5G where they don’t already have fiber, then how can anybody else justify it? Deploying 5G is like deploying any new network – it is only going to make financial sense where deployment costs are reasonable – and for now that means where there is already easy access to fiber. I think the opportunities for rapid 5G deployment are a lot less than what policy-makers think.

Are Millimeter Wave Radios Safe?

Deep inside the filing of the recent docket at the FCC that resulted in eased access to poles for 5G providers were comments that warned about the unknown health impacts of millimeter wave radiation. A group of 225 scientists from 41 countries filed comments in Dockets No. 15-79 asking that the FCC be cautious in implementing millimeter wave radiation without further scientific research into the impacts of prolonged exposure of the radiation to humans. These scientists have all published peer-reviewed papers on the topic.

As scientists are wont to do, their wording sounds cautious, but in scientific language is a stern warning: “There is scientific evidence to cause concern among independent scientists, that this new infrastructure, on top of existing electrical and wireless infrastructures, will cause more harm to mankind and nature . . . The FCC needs to critically consider the potential impact of the 5th generation wireless infrastructure on the health and safety of the U.S. population before proceeding to deploy this infrastructure.”

I looked around the web to find some of the research that’s been done in this area in the past. A quick web search showed:

·         The biggest impact of millimeter wave radiation is on the skin and 90% of the transmitted power is absorbed by the dermis and epidermis layers of the skin – meaning concerns about skin cancer.

·          A 1994 study showed that low levels of millimeter radiation created lens opacity in rats, which is linked to cataracts.

·         A 1992 Russian study found that frequencies between 53-78 GHz caused overall stress in rats that manifested by an increase in arrhythmia and other changes to heart rates.

·         A 2002 Russian study found that exposure to low level 42 GHz radiation had a profound impact on the overall immune systems in rats.

·         A 2016 Armenian study observed that millimeter wave radiation created changes in the cells of bacteria. They postulated that the radiation could do the same to humans. This study concluded that changes to bacteria could change result in increasing drug resistant.

·         Another Armenian study showed that the impact to plants might be even greater than to animals.

·         Dr. Joel Moskowitz of UC Berkeley says that the impacts of all of these other studies might be understated since 5G uses pulsed frequencies. The studies were all done using constant frequency and Dr. Moskowitz has shown that pulsed frequencies magnify the impact of radiation on organisms.

One of the handful of current uses of millimeter wave radiation is in airport scanners, which use frequencies between 24 – 30 GHz. Numerous studies have shown that the likely exposure from these scanners is safe, but made the conclusion based upon the relative short burst of exposure. The issue that has scientists concerned about 5G is continuous transmission from poles in front of homes, and perhaps eventually building some of this frequency into cellphones.

Obviously, no study has yet shown a direct health impact from pole-mounted 5G transmitters since they are just now starting to see their first deployments. The scientific evidence of the dangers of the prolonged low-level radiation has a lot of people concerned. I’ve been contacted by several groups that are starting to alert their local officials of this danger (the inbox of a blogger can be really interesting). Nationwide several local politicians have jumped on the issue.

The question these local groups are asking is if there is any way to use the health concerns to try to block 5G deployment in their neighborhoods. It looks to me like the recent FCC order for allowing small cell sites on poles doesn’t contain much ambiguity – pole owners have a federal mandate to connect the 5G devices. However, that order is being challenged in court by numerous states and cities and I imagine that the health concerns are going to be one of the issues raised in those appeals – with the primary legal tactic challenging if the FCC has the jurisdiction to override cities on pole issues.

Interestingly, Verizon has announced a timeline that seems to be going full bore on installation of 5G transmitters. The industry is usually cautious about relying on any FCC order until it’s been vetted by the courts, but perhaps Verizon is only concentrating on 5G deployment in cities that have invited them to deploy, like Sacramento. It won’t be surprising to see cities ask for an injunction against deployment until the courts decide on the issues.

Deploying 5G – It’s no Panacea

This was published last week as an article on WRAL Techwire, a Raleigh TV station. 

If you read many articles about 5G, you’d think that we’re on the cusp having wireless broadband brought to most homes in America, providing homes with another option for broadband. This idea was recently bolstered by news that Verizon plans to offer 5G wireless broadband to as many as 11 million homes over the next few years.

However, Verizon has one huge advantage over the rest of the market in that they already own an extensive fiber network that reaches to cellular towers, large businesses, schools, large apartment complexes and high-rise buildings. Verizon plans on leveraging this existing network to bring wireless broadband to neighborhoods lucky enough to be near to their fiber. It’s unlikely that anybody else will copy the Verizon business plan – the other big telcos with large fiber networks, AT&T and CenturyLink, have made it clear that they are not pursuing 5G broadband to homes.

Verizon has a second benefit that few others share. As a huge cellular carrier, Verizon will benefit by relieving the pressure on their cellular networks in neighborhoods where they offer 5G. The bandwidth being demanded on cellular networks is the fastest growing sector of the industry with total bandwidth requirements doubling every 18 months. Verizon will save a lot of money by not having to bolster their cellular backbones in 5G neighborhoods.

So, what would it take for anybody else to provide the same 5G wireless technology as Verizon? The 5G technology relies on the placement of small transmitters on utility poles or street lights and the FCC just passed rules making it easier for a provider to get the needed connections. Each transmitter will be able to wirelessly transmit broadband to homes or businesses in the immediate area. Verizon press releases say the effective distance for delivering a signal is up to 2,000 feet, but most of the industry thinks the realistic distance is closer to 1,000 feet. That means that any given pole-transmitter will be able to ‘see’ anywhere from a handful up to a few dozen homes, depending upon what’s called line-of-sight. The 5G spectrum requires a relatively clear path between the transmitter and a dish placed on the home – and that means that 5G is best deployed on straight streets without curves, hills, dense tree cover or anything that decreases the number of homes within range of a transmitter.

The first-generation Verizon technology claims broadband speeds of around 300 Mbps, with the goal to eventually reach gigabit speeds. That level of bandwidth can only be delivered to the pole-mounted unit in two ways – with fiber or with a high-bandwidth wireless link. If wireless backhaul is used to bring broadband to the poles there can be no obstructions between the pole units and the wireless basestation – unlike many kinds of wireless transmission, high-bandwidth wireless backhaul can’t tolerate any obstructions in the transmission path. That requirement for pure line-of-sight will make wireless backhaul impractical in many neighborhoods.

Where wireless backhaul won’t work a 5G network will require fiber to each pole transmitter. The cost of building fiber to neighborhoods is the biggest barrier to widespread 5G deployment. It’s expensive to string fiber in residential neighborhoods. The cost of putting fiber on poles can be expensive if there are already a lot of other wires on the poles (from the electric, cable and telephone companies). In neighborhoods where other utilities are underground the cost of constructing fiber can be exorbitantly high.

To summarize, a 5G network need transmitters on poles that are close to homes and also needs fiber at or nearby to each pole transmitter to backhaul these signals. The technology is only going to make financial sense in a few circumstances. In the case of Verizon, the technology is reasonably affordable since the company will rely on already-existing fiber. An ISP without existing fiber is only going to deploy 5G where the cost of building fiber or wireless backhaul is reasonably affordable. This means neighborhoods without a lot of impediments like hills, curvy roads, heavy foliage or other impediments that would restrict the performance of the wireless network. This means not building in neighborhoods where the poles are short or don’t have enough room to add a new fiber. It means avoiding neighborhoods where the utilities are already buried. An ideal 5G neighborhood is also going to need significant housing density, with houses relatively close together without a lot of empty lots.

This technology is also not suited to downtown areas with high-rises; there are better wireless technologies for delivering a large data connection to a single building, such as the high bandwidth millimeter wave radios used by Webpass. 5G technology also is not going to make a lot of sense where the housing density is too low, such as suburbs with large lots. 5G broadband is definitely not a solution for rural areas where homes and farms are too far apart.

5G technology is not going to be a panacea that will bring broadband to most of America. Most neighborhoods are going to fail one of the needed parameters – by having poles without room for fiber, by having curvy roads where a transmitter can only reach a few homes, etc. It’s going to be as much of a challenge for an ISP to justify building 5G as it is to build fiber to each customer. Verizon claims their costs are a fraction of building fiber to homes, but that’s only because they are building from existing fiber. There are few other ISPs with large, underutilized fiber networks that will be able to copy the Verizon roadmap. With the current technology the cost of deploying 5G looks to be nearly identical to the cost of deploying fiber-to-the-home.

I’m Not a Fan of the 5G Hype

I read a lot of articles talking about what a huge deal 5G will be for the economy. The source of the excitement is the huge numbers being thrown around. For example, Qualcomm and IHS Technology issued a report in 2017 that estimated that 5G could enable $12 trillion in economic output around the world by 2035. That same report made the incredibly hyped claim that 5G could be as important to the world as the introduction of electricity. It’s no wonder that financial people are excited about the potential for 5G and why so many companies want to somehow grab a piece of this new market.

But I look around my own part of the world and I have a hard time seeing this kind of impact. I live in a town of 90,000 people. If we are like the average US market then roughly 85% of homes here already have landline broadband. Practically everybody here also has a cellphone, with the majority using smartphones.

People may read my blog and think I am not a fan of 5G – but that’s not true, I’m just not a fan of the hype. I would love for Verizon to offer me another choice of home broadband – I would consider changing to Verizon at the right price, as would many other households. My biggest question is how much value Verizon would create by introducing 5G in my town. Let’s say Verizon was to capture 30% of the broadband market here – that certainly creates an advantage to Verizon and gives them a significant new revenue stream. However, for every customer Verizon gains, Charter or AT&T would lose a customer, and overall that’s a zero-sum game. Further, if you assume that 5G competition would drive down prices a bit (it might not since oligopolies tend to not compete on price), then the overall spending on broadband in the town might actually decrease a bit.

The same thing would happen with cellular 5G. The big four cellular companies will have to spend a lot to upgrade all of the cell sites here to 5G. We’re a hilly and heavily wooded City and it will take a lot of small cell sites just to fill in the existing cellular holes. But unless they can find a way to charge more for 5G cellular broadband, then cellphone broadband is also a zero-sum game. Everybody in town already has a cellphone and a data plan, and the long-term trend is for cellular data prices to drop. I don’t see the new revenue stream from 5G cellular that will pay for the needed upgrades. Perhaps faster cellular data speeds will attract more people to drop landlines, but that’s also a zero-sum for the market as a whole.

There is one new aspect of 5G that the cellular carriers are counting on to create a new revenue stream. Once the 5G technology has been developed, the 5G standard calls for the ability of a cell site to communicate with as many as 100,000 devices – a huge increase over today’s capabilities. The cell carriers are clearly banking on IoT as the new revenue opportunity.

However, that kind of transition isn’t going to happen overnight. There are a whole lot of steps required before there is a huge cellular IoT revenue stream. First, the technology has to be developed that will handle that huge number of IoT devices. The 5G core standards were just developed last year and it will take years for vendors and labs to achieve the various goals for 5G. As those improvements are realized it will take a lot longer to introduce them into the cellular networks. We are just now finally seeing the deployment of 4G LTE – AT&T is just now deploying what they call 5G Evolution into any major markets, which is actually fully-compliant 4G LTE. The same slow roll-out will occur with 5G – we’ll advance through 4.1G, 4.2G, etc. until we see fully-compliant 5G network in a decade.

We’ll also have to wait for the rollout of IoT sensors that rely on a 5G network. It will be a bit of a chicken and egg situation because nobody will want to deploy devices that need 5G until 5G is active in a sufficient number of neighborhoods. But eventually this will come to pass – to a degree we can’t predict.

The question is if IoT usage is the trillion-dollar application. I certainly look forward to a time when I might have an embedded chip for 24/7 health monitoring using a 5G network – that’s a service that many people will be willing to pay for. But there is no guarantee that the revenue streams will materialize for IoT monitoring to the extent envisioned by AT&T and Verizon. I’ve done the math and the only way that the carriers can see a trillion-dollar benefits from IoT is if future homes have an IoT monitoring bill of the same magnitude as our current cellular or broadband bills – and that may never come to pass. I would love to see a concrete business plan that predicts where these huge new benefits come from, but I’ve seen nothing specific other than the big claims.

There is one aspect of the hype that I do buy. While I can’t see any way to equate the value of 5G to be as important as electricity, it is likely to share the same kind of introduction cycle that we saw with the electric grid. It took 25 years for electricity to spread to the majority of US cities and another 25 years until it was in most of rural America. New technologies today deploy faster than the deployment of electric grids – but this still can’t happen overnight and is at likely to be many years until rural America sees 5G cellular and a lot longer for 5G fixed broadband.

If you believe the hype in the press, we’ll start seeing big benefits from 5G in 2019 and 2020. I can promise you a blog at the end of next year that looks to see if any of this hype materialized – but I already suspect the answer will be no.

The Millimeter Wave Auctions

The FCC will soon hold the auction for two bands of millimeter wave spectrum. The auction for the 28 GHz spectrum, referred to as Auction 101, will begin on November 14 and will offer 3,072 licenses in the 27.5 to 28.35 GHz band. The auction for 24 GHz, referred to as Auction 102, will follow at the end of Auction 101 and will offer 2,909 licenses in the 24.25 to 24.45 GHz and the 24.75 to 25.25 GHz bands.

This is the spectrum that will support 5G high-bandwidth products. The most unusual aspect of this auction is that the FCC is offering much wider channels than ever before, making the spectrum particularly useful for broadband deployment and also for the frequency slicing needed to serve multiple customers. The Auction 101 includes two blocks of 425 MHz and is being auctioned by County. Auction 102 will include seven blocks of 100 MHz and will be auctioned by Partial Economic Areas (PEA). PEAs divide the country into 416 zones, grouped by economic interest. They vary from the gigantic PEA that encompasses all of the New York City and the surrounding areas in Connecticut and New Jersey to PEAs that are almost entirely rural.

That means that every part of the country could see as many as seven different license holders, assuming that somebody pursues all of the spectrum. It’s likely, though, that there will be rural areas where nobody buys the spectrum. It will be interesting to look at the maps when the auctions are done.

This is the spectrum that can be used to support the fixed wireless broadband like Verizon is now deploying from poles. The spectrum has the capability of delivering big bandwidth, but for relatively short distances of 1,000 feet or more. The spectrum can also be used as a focused beam to deliver several gigabits of bandwidth for a mile to a single point, such as what Webpass is currently doing to serve downtown high-rise apartment buildings.

The industry consensus is that this spectrum will find limited use in rural areas for now since it’s hard, with existing technology, to deploy a 5G transmitter site that might only reach a few potential customers.

The FCC has released the names of the companies that will be bidding in the auction. As expected the big cellular companies are there and AT&T, Verizon and T-Mobile are bidding. Absent is Sprint, but the speculation is that they are relying on the merger with T-Mobile and have elected to sit out the auction.

The big telcos are also in the auctions with AT&T, Verizon, Frontier and Windstream all participating. Absent is CenturyLink, which further strengthens the belief that they are no longer pursuing residential broadband.

The only cable company of any size in the auction is Cox Communications. The other big companies like Comcast, Charter, Altice and many others are sitting out the auction. It doesn’t make sense for a cable company to deploy the spectrum where they are already the incumbent broadband provider. Wireless technology for end users would complete directly with their own networks. Since Cox is privately held it’s hard to know their plans, but one use of the spectrum would be to expand in the areas surrounding their current footprint or to move into new markets. It’s costly to expand their hybrid-fiber networks and 5G wireless might be a cheaper way to move into new markets.

There are some rural companies that are bidding for spectrum. It’s hard to know if the rural telcos and cooperatives on the list want to use the spectrum to enhance broadband in their own footprint or if they want to use the spectrum to expand into larger nearby markets. One of the most interesting companies taking part in both auctions is US Cellular. They are the fifth largest cellular company after the big four and serve mostly rural markets. They’ve already made public announcements about upgrading to the most current version of 4G LTE and it will be interesting to see how they use this spectrum.

The 5G Summit

There was recently a 5G Summit held at the White House to discuss how the administration could encourage the public sector to deploy 5G as quickly as possible. The purpose of the summit was summarized well by Larry Kudlow, the director of the National Economic Council who said the administration’s approach to the issue is ‘American first, 5G first”.

Kudlow went on to say that the administration wants to give the wireless industry whatever they need to deploy 5G quickly. The FCC recently took a big step in that direction by speeding up and cutting the costs for attaching 5G small cell sites to poles and other infrastructure in the right-of-way.

There are a few other ways that were mentioned about how the administration could foster 5G deployment. David Redl, the head of the NTIA called for the government to make the needed spectrum available for 5G. The FCC is in the process of having an auction for spectrum in the 25 GHz and 28 GHz bands. The FCC is also working towards finalizing rules for the 3.5 GHz and 3.7 GHz spectrum (the 3.5 GHz CBRS band will be the subject of tomorrow’s blog).

I hope that the fervor to promote 5G doesn’t result in giving all of the new spectrum to the big wireless carriers. One of the best things the FCC ever did was to set aside some blocks of spectrum for public use. This fueled the WiFi technology sector and most homes now have WiFi networks. The spectrum also powers the fixed wireless technology that is bringing better broadband to rural America. While 5G is important, the administration and the FCC need to set aside more public spectrum to allow for innovation and broadband deployment outside of the big ISP sector.

I found this summit to be intriguing because it’s the first time I recall the government so heavily touting a telecom technology before it was introduced into the marketplace. There was mention in the Summit that the US is in a race with China to deploy 5G, but I’ve never seen anybody explain how that might give China an advantage over the US. China is far behind the US in terms of landline broadband and it makes sense for them (and much of the rest of the world) to stress wireless technologies.

There certainly was no similar hoopla when Verizon first announced the widespread deployment of fiber – an important milestone in the industry. In fact, at the time the press and Wall Street said that Verizon was making a mistake. It’s interesting to see that Verizon is again the market leader and is the only company, perhaps aside from T-Mobile, that has announced any plans to deploy 5G broadband. It’s worth looking back in history to remember that no other big ISPs followed Verizon’s lead and for over a decade the only other fiber to residences was built by small telcos, municipalities and small overbuilders.

Even if the government makes it as easy as possible to deploy 5G, will other big ISPs follow Verizon into the business? For now, AT&T has clearly decided to pass on the technology and is instead investing in fiber to homes and businesses. The big cable companies have shown no interest in the technology. The cellular companies will upgrade mobile networks to 5G but that’s expected to happen incrementally over a decade and won’t be a transformational technology upgrade. 4G LTE is still expected to be the wireless workhorse for many years to come.

There was one negative issue mentioned at the Summit by Rep. Greg Walden of Oregon. While praising efforts to deploy 5G he also said that we needed to take steps to protect the supply chain for 5G. Currently the FCC has precluded the use of any federal funds to buy technology manufactured by Huawei. But a more pressing issue is the current tariffs on China that are inflating the cost of 5G electronics – something that will be a barrier to deployment if they remain in place for very long.

It’s likely that the Summit was nothing more than politicians climbing onto a popular bandwagon. There has been enough hype about 5G that much of the public views it as a cutting-edge technology that will somehow transform broadband. We’re going to have to watch the Verizon deployment for a while, though, to see if that is true.

The administration has it within their power to create more benefits for companies willing to invest in 5G. However, helping huge companies like Verizon, which doesn’t need the help, is not likely going to bring 5G to more homes. And federal money won’t transform 5G into a technology that can benefit rural America, since 5G requires a robust fiber network. I just hope this doesn’t signal more giveaways to the giant ISPs – but if the FCC’s small cell order is any indicator, that might be all it means.

More FCC Mapping Woes

The FCC has another new billion dollar grant program, this one aimed to improve rural cellular coverage. Labeled as the Mobility Fund II the program will conduct a reverse auction sometime next year to give $4.53 billion to cellular carriers to extend wireless coverage to the most remote parts of the country. For taking the funding a cellular carrier must bring 4G LTE coverage to the funded areas and achieve cellular download speeds of at least 10 Mbps. Funding will be distributed over 10 years with build out requirements sooner than that.

Just like with the CAF II program, the areas eligible for funding are based upon the FCC’s broadband maps using data collected by the existing cellular carriers. As you might expect, the maps show that the parts of the country with the worst coverage – those eligible for funding – are mostly in the mountains and deserts of the west and in Appalachia.

The release of the Mobility Fund II maps instantly set off an uproar as citizens everywhere complained about lack of cellular coverage and politicians from all over the country asked the FCC why there wasn’t more funding coming to their states. The FCC received letters from senators in Mississippi, Missouri, Maine and a number of other states complaining that their states have areas with poor or non-existent cellular coverage that were not covered be the new fund.

If you’ve traveled anywhere in rural America you know that there are big cellular dead spots everywhere. I’ve been to dozens of rural counties all across America in the last few years and every one of them has parts of their counties without good cellular coverage. Everybody living in rural America can point to areas where cellphones don’t work.

The issue boils down to the FCC mapping used to define cellular and broadband coverage. The maps for this program were compiled from a one-time data request to the cellular carriers asking for existing 4G coverage. It’s obvious by the protests that the carriers claim cellular coverage where it doesn’t exist.

In August, the Rural Wireless Association (RWA) filed a complaint with the FCC claiming that Verizon lied about its cellular coverage by claiming coverage in many areas that don’t have it. This is the association of smaller wireless companies (they still exist!). They say that the Verizon’s exaggerated coverage claims will block the funding to many areas that should be eligible.

The Mobility Fund II program allows carriers to challenge the FCC’s maps by conducting tests to identify areas that don’t have good cellular coverage. The smaller carriers in the RWA have been filing these challenges and the FCC just added 90 additional days for the challenge process. Those challenges will surely add new eligible coverage areas for this program.

But the challenge program isn’t going to uncover many of these areas because there are large parts of the country that are not close to an RWA carrier, and which won’t be challenged. People with no cellular coverage that are not part of the this grant program might never get good cellular coverage – something that’s scary as the big telcos plan to tear down copper in rural America.

The extent of the challenges against the Verizon data are good evidence that Verizon overstated 4G LTE coverage. The RWA members I know think Verizon did this purposefully to either block others from expanding cellular networks into areas already served by Verizon or to perhaps direct more of this new fund to areas where Verizon might more easily claim some of the $4.5 billion.

To give Verizon a tiny amount of credit, knowing cellular coverage areas is hard. If you’ve ever seen a coverage map from a single cell tower you’ll instantly notice that it looks like a many-armed starfish. There are parts of the coverage area where good signal extends outward for many miles, but there are other areas where the signal is blocked by a hill or other impediments. You can’t draw circles on a map around a cell tower to show coverage because it only works that way on the Bonneville Salt Flats. There can be dead spots even near to the cell tower.

The FCC fund is laudable in that it’s trying to bring cellular coverage to those areas that clearly don’t have it. But there are countless other holes in cellular coverage that cannot be solved with this kind of fund, and people living in the many smaller cellular holes won’t get any relief from this kind of funding mechanism. Oddly, this fund will bring cellular coverage to areas where almost nobody lives while not addressing cellular holes in more populated areas.

Verizon’s Residential 5G Broadband

We finally got a look at the detail of Verizon’s 5G residential wireless product. They’ve announced that it will be available to some customers in Houston, Indianapolis, Los Angeles and Sacramento starting on October 1.

Verizon promises average download data speeds of around 300 Mbps. Verizon has been touting a gigabit wireless product for the last year, but the realities of wireless in the wild seems to have made that unrealistic. However, 300 Mbps is a competitive broadband product and in many markets Verizon will become the fastest alternative competitor to the cable companies. As we’ve seen everywhere across the country, a decent competitor to the big cable companies is almost assured of a 20% or higher market penetration just for showing up.

The product will be $50 per month for customers who use Verizon wireless and $70 for those that don’t. These prices will supposedly include all taxes, fees and equipment – although it’s possible that there are add-ons like using a Verizon WiFi router. That pricing is going to be attractive to anybody that already has Verizon cellular – and I’m sure the company is hoping to use this to attract more cellular customers. This is the kind of bundle that can make cellular stickier and is exactly what the Comcast and Charter have in mind as they are also offering cellular. Verizon is offering marketing inducements for the roll-out and are offering 3 months free of YouTube TV or else a free Apple TV 4K or a Google Chromecast Ultra.

Theoretically this should set off a bit of a price war in cities where Comcast and Charter are the incumbent cable providers. It wouldn’t be hard for those companies to meet or beat the Verizon offer since they are already selling cellular at a discount. We’re going to get a fresh look at oligopoly competition – will the cable companies really battle it out? The cable companies have to be worried about losing significant market share in major urban markets.

We’re also going to have to wait a while to see the extent of the Verizon coverage areas. I’ve been speculating about this for a while and I suspect that Verizon is going to continue with their history of being conservative and disciplined. They will deploy 5G where there is fiber that can affordably support it – but they are unlikely to undertake any expensive fiber builds just for this product. Their recently announced ‘One Fiber’ policy says just that – the company wants to capitalize on the huge amount of network that they have already constructed for other purposes. This means it’s likely in any given market that coverage will depend upon a customer’s closeness to Verizon fiber.

There is one twist to this deployment that means Verizon might not be in a hurry to deploy this too quickly. The company has been working with Ericsson, Qualcomm, Intel and Samsung to create proprietary equipment based upon the 5GTF standard. But the rest of the industry has adopted the 3GPP standard for 5G and Verizon admits it will have to replace any equipment installed with their current standard.

Verizon also said over the last year that they wanted this to be self-installed by customers. At least for now the installations are going to require a truck roll, which will add to the cost and the rate of deployment of the new technology.

Interestingly, these first markets are outside of Verizon’s telco footprint. This means that Verizon will not only be taking on cable companies, but that they might be putting the final nail in the coffin of DSL offered by AT&T and other telcos in the new markets. Verizon is unlikely to roll this out to compete with their own FiOS product unless deployments are incredibly inexpensive. But this might finally bring a Verizon broadband product to neighborhoods in the northeast that never got FiOS.

It’s going to be a while under we understand the costs of this deployment. Verizon has been mum about the specific network elements and reliance on fiber needed to support the product. And they have been even quieter about the all-in cost of deployment.

Cities all over the country are going to get excited about this deployment in the hope of getting a second competitor to their cable company which are often a near-monopoly. It appears that the product is going to work best where there is already a fiber-rich environment. Most urban areas, while having little last mile-fiber, are crisscrossed with fiber used to get to large businesses, governments, schools, etc.

The same is not necessarily the same in suburbs and definitely not true of smaller communities and rural America. The technology depends upon local last-mile fiber backhaul. Verizon says that they believe their potential market will be to eventually pass 30 million households, or a little less than 25% of the US market. I’d have to think that the map for others, except perhaps for AT&T largely coincide with the Verizon map. It seems that Verizon wants to be the first to market to potentially dissuade other entrants. We’ll have to wait and see if a market can reasonably support more than one last-mile 5G provider – because companies like T-Mobile also have plans for wide deployment.

Going Wireless-only for Broadband

According to New Street Research (NSR), up to 14% of homes in the US could go all-wireless for broadband. They estimate that there are 17 million homes which are small enough users of bandwidth to justify satisfying their broadband needs strictly using a cellular connection. NSR says that only about 6.6 million homes have elected to go all-wireless today, meaning there is a sizable gap of around 10 million more homes for which wireless might be a reasonable alternative.

The number of households that are going wireless-only has been growing. Surveys by Nielsen and others have shown that the trend to go wireless-only is driven mostly by economics, helped by the ability of many people to satisfy their broadband demands using WiFi at work, school or other public places.

NSR also predicts that the number of homes that can benefit by going wireless-only will continue to shrink. They estimate that only 14 million homes will benefit by going all-wireless within five years – with the decrease due to the growing demand of households for more broadband.

There are factors that make going wireless an attractive alternative for those that don’t use much broadband. Cellular data speeds have been getting faster as cellular carriers continue to implement full 4G technology. The first fully compliant 4G cell site was activated in 2017 and full 4G is now being deployed in many urban locations. As speeds get faster it becomes easier to justify using a cellphone for broadband.

Of course, cellular data speeds need to be put into context. A good 4G connection might be in the range of 15 Mbps. That speed feels glacial when compared to the latest speeds offered by cable companies. Both Comcast and Charter are in the process of increasing data speeds for their basic product to between 100 Mbps and 200 Mbps depending upon the market. Cellphones also tend to have sluggish operating systems that are tailored for video and that can make regular web viewing feel slow and clunky.

Cellular data speeds will continue to improve as we see the slow introduction of 5G into the cellular network. The 5G specification calls for cellular data speeds of 100 Mbps download when 5G is fully implemented. That transition is likely to take another decade, and even when implemented isn’t going to mean fast cellular speeds everywhere. The only way to achieve 100 Mbps speeds is by combining multiple spectrum paths to a given cellphone user, probably from multiple cell sites. Most of the country, including most urban and suburban neighborhoods are not going to be saturated with multiple small cell sites – the cellular companies are going to deploy faster cellular speeds in areas that justify the expenditure. The major cellular providers have all said that they will be relying on 4G LTE cellular for a long time to come.

One of the factors that is making it easier to go wireless-only is that people have access throughout the day to WiFi, which is powered from landline broadband. Most teenagers would claim that they use their cellphones for data, but most of them have access to WiFi at home and school and at other places they frequent.

The number one factor that drives people to go all-wireless for data is price. Home broadband is expensive by the time you add up all of the fees from a cable company. Since most people in the country already has a cellphone then dropping the home broadband connection is a good way for the budget-conscious to control their expenses.

The wireless carriers are also making it easier to go all wireless by including some level of video programming with some cellular plans. These are known as zero-rating plans that let a customer watch some video for free outside of their data usage plan. T-Mobile has had these plans for a few years and they are now becoming widely available on many cellular plans throughout the industry.

The monthly data caps on most wireless plans are getting larger. For the careful shopper who lives in an urban area there are usually a handful of truly unlimited data plans. Users have learned, though, that many such plans heavily restrict tethering to laptops and other devices. But data caps have creeped higher across-the-board in the industry compared to a few years ago. Users who are willing to pay more for data can now buy the supposedly unlimited data plans from the major carriers that are actually capped between 20 – 25 GB per month.

There are always other factors to consider like cellular coverage. I happen to live in a hilly wooded town where coverage for all of the carriers varies block by block. There are so many dead spots in my town that it’s challenging to use cellular even for voice calls. I happen to ride Uber a lot and it’s frustrating to see Uber drivers get close to my neighborhood and get lost when they lose their Verizon signal. This city would be a hard place to rely only on a cellphone. Rural America has the same problem and regardless of the coverage maps published by the cellular companies there are still huge areas where rural cellular coverage is spotty or non-existent.

Another factor that makes it harder to go all-wireless is working from home. Cellphones are not always adequate when trying to log onto corporate WANs or for downloading and working on documents, spreadsheets and PowerPoints. While tethering to a computer can solve this problem, it doesn’t take a lot of working from home to surpass the data caps on most cellular plans.

I’ve seen a number of articles in the last few years talking claiming that the future is wireless and that we eventually won’t need landline broadband. This claim ignores the fact that the amount of data demanded by the average household is doubling every three years. The average home uses ten times or more data on their landline connection today than on their cellphones. It’s hard to foresee the cellphone networks able to close that gap when the amount of landline data use keeps growing so rapidly.