The Fourth Industrial Revolution

There is a lot of talk around the world among academics and futurists that we have now entered into the beginnings of the fourth industrial revolution. The term industrial revolution is defined as a rapid change in the economy due to technology.

The first industrial revolution came from steam power that drove the creation of the first large factories to create textiles and other goods. The second industrial revolution is called the age of science and mass production and was powered by the simultaneous development of electricity and oil-powered combustion engines. The third industrial revolution was fairly recent and was the rise of digital technology and computers.

There are differing ideas of what the fourth industrial revolution means, but every prediction involves using big data and emerging technologies to transform manufacturing and the workplace. The fourth industrial revolution means mastering and integrating an array of new technologies including artificial intelligence, machine learning, robotics, IoT, nanotechnology, biotechnology, and quantum computing. Some technologists are already predicting that the shorthand description for this will be the age of robotics.

Each of these new technologies is in their infancy but all are progressing rapidly. Take the most esoteric technology on the list – quantum computing. As recently as three or four years ago this was mostly an academic concept and we now have first generation quantum computers. I can’t recall where I read it, but I remember a quote that said that if we think of the fourth industrial revolution in terms of a 1,000-day process that we are now only on day three.

The real power of the fourth industrial revolution will come from integrating the technologies. The technology that is the most advanced today is robotics, but robotics will change drastically when robots can process huge amounts of data quickly and can use AI and machine learning to learn and cope with the environment in real time. Robotics will be further enhanced in a factory or farm setting by integrating a wide array of sensors to provide feedback from the surrounding environment.

I’m writing about this because all of these technologies will require the real-time transfer of huge amounts of data. Futurists and academics who talk about the fourth industrial revolution seem to assume that the needed telecon technologies already exist – but they don’t exist today and need to be developed in conjunction with the other new technologies.

The first missing element to enable the other technologies are computer chips that can process huge amounts of data in real time. Current chip technology has a built-in choke point where data is queued and fed into and out of a chip for processing. Scientists are exploring a number of ways to move data faster. For example, light-based computing has the promise to move data at speeds up to 50 Gbps. But even that’s not fast enough and there is research being done using lasers to beam data directly into the chip processor – a process that might increase processing speeds 1,000 times over current chips.

The next missing communications element is a broadband technology that can move data fast enough to keep up with the faster chips. While fiber can be blazingly fast, a fiber is far too large to use at the chip level, and so data has to be converted at some point from fiber to some other transmission path.

The amount of data that will have to be passed in some future applications is immense. I’ve already seen academics bemoaning that millimeter wave radios are not fast enough, so 5G will not provide the solution. Earlier this year the first worldwide meeting was held to officially start collaborating on 6G technology using terabit wave spectrum. Transmissions at those super-high frequencies only stay coherent for a few feet, but these frequencies can carry huge amounts of data. It’s likely that 6G will play a big role in providing the bandwidth to the robots and other big data needs of the fourth industrial revolution. From the standpoint of the telecom industry, we’re no longer talking about last-mile and we are starting to address the last-foot!

Are You Ready for 6G?

The first 6G summit convenes this coming weekend in Levi, Lapland, Finland, sponsored by the University of Oulu. The summit will end with a closed-door, invitation-only assembly of wireless researchers and vendors with the goal to create a draft vision statement defining the goals of 6G research. Attendees include all of the major wireless vendors like Huawei, Ericsson, Samsung, and NTT, along with researchers from numerous universities and groups like Nokia Bell Labs.

As you would expect, even as 5G standards were being finalized there were already private and academic research labs working on what will come next. So far, some of the vision for 6G includes concepts like:

  • Use of higher frequencies between 100 GHz and 1 THz, introducing the world to the idea of terahertz spectrum. The upper end of this range lies between radio waves and infrared light. The FCC just approved research above 95 GHz.
  • Researches believe this next generation wireless will be needed to finally enable 3D holograms needed for lifelike telepresence.
  • The higher frequencies would also allow for densification and for the simultaneous transmission of multiple large-bandwidth transmissions. Researchers already believe that with the higher frequencies that the capacity of a wireless network could be as much as 1,000 times that of 5G – but even 10 times faster would be a major breakthrough.
  • Scientists anticipate within a decade that we’ll have advanced far enough with artificial intelligence to enable AI-powered routing that will choose the best path in real time for each packet and will significantly decrease latency.
  • Various researchers from Brown University and universities in Australia have said that 5G will be inadequate to satisfy our future needs for both bandwidth and for the overall number of IoT connections. One of the goals of 6G will be to increase the number of connected devices from a given transmitter by one to two magnitudes.

The higher frequencies will allow for even faster data transmission, as much as 10 times faster than the gigabit speeds envisioned for point-to-multipoint 5G using millimeter wave radios.

There are a number of issues to be overcome with the higher frequencies, the primary being that radio waves at those frequencies won’t pass through any barrier. However, scientists already think there might be strategies for bouncing the waves around obstacles.

The other shortcoming of the frequencies is the short distances before the signal dissipates. This is likely to limit the higher frequencies to indoor use allowing for indoor wireless networks with speeds as fast as 10 Gbps.

Interestingly, researchers in China say that this vision of 6G is the end of the line in terms of major platform upgrades and that there will never be a 7G. After 6G the goal over time will be to improve the performance of the various aspects of the technologies involved. Apparently, the Chinese have never met any AT&T and Verizon marketing staff.

Many of the group researching these topics are already talking about having a 6G set of standards by 2030. But there is a lot of research to be done including fundamental steps like developing chips capable of handling the higher speeds. We also will hit regulatory barriers – governments all regulate the use of radio waves, but it might be harder to regulate the use of the light-like frequencies at the base of the infrared spectrum.

Charter’s Plans for 6G

It didn’t take long for somebody say they will have a 6G cellular product. Somebody has jumped the gun every time there has been migration to a new cellular standard, and I remember the big cellular companies making claims about having 4G LTE technology years before it was actually available.

But this time it’s not a cellular company talking about 6G – it’s Charter, the second largest US cable company. Charter is already in the process of implementing LTE cellular through the resale of wholesale minutes from Verizon – so they will soon be a cellular provider. If we look at the early success of Comcast they might do well since Charter has almost 24 million broadband customers.

Tom Rutledge, the Charter CEO made reference to 5G trials being done by the company, but also went on to tout a new Charter product as 6G. What Rutledge is really talking about is a new product that will put a cellular micro cell in a home that has Charter broadband. This hot spot would provide strong cellular coverage within the home and use the cable broadband network for backhaul for the calls.

Such a network would benefit Charter by collecting a lot of cellular minutes that Charter wouldn’t have to buy wholesale from Verizon. Outside of the home customers would roam on the Verizon network, but within the home all calls would route over the landline connection. Presumably, if the home cellular micro transmitters are powerful enough, neighbors might also be able to get cellular access if they are Charter cellular customers. This is reminiscent of the Comcast WiFi hotspots that broadcast from millions of their cable modems.

This is not a new idea. For years farmers have been buying cellular repeaters from AT&T and Verizon to boost their signal if they live near the edge of cellular coverage. These products also use the landline broadband connection as backhaul – but in those cases the calls route to one of the cellular carriers. But in this configuration Charter would intercept all cellular traffic and presumably route the calls themselves. There are also a number of cellular resellers who have been using landline backhaul to provide low-cost calling.

This would be the first time that somebody has ever contemplated this on a large scale. One can picture large volumes of Charter cellular micro sites in areas where they are the incumbent cable company. When enough homes have transmitters they might almost create a ubiquitous cellular network that is landline based – eliminating the need for cellular towers.

It’s an interesting concept. A cable company in some ways is already well positioned to implement a more traditional small cell cellular network. Once they have upgraded to DOCSIS 3.1 they can place a small cell site at any pole that is already connected to the cable network. For now the biggest hurdle to such a deployment is the small data upload speeds for the first generation of DOCSIS 3.1, but cable labs has already released a technology that will enable faster upload speeds, up to synchronous connections. Getting faster upload speeds means finding some more empty channel slots on the cable network and could be a challenge in some networks.

The most interesting thing about this idea is that anybody with a broadband network could offer cellular service in the same way if they can make a deal to buy wholesale minutes. But therein lies the rub. While there are now hundreds of ‘cellular’ companies, only a few of them own their own cellular networks and everybody else is reselling. Charter is large enough to probably feel secure about having access to long-term cellular minutes from the big cellular companies. But very few other landline ISPs are going to get that kind of locked arrangement.

I’ve always advised clients to be wary of any resell opportunity because the business can change on a dime when the underlying provider changes the rules of the game. Our industry is littered with examples of companies that went under when the large resale businesses they had built lost their wholesale product. The biggest such company that comes to mind was Talk America that had amassed over a million telephone customers on resold lines from the big telcos. But there are many other examples of paging resellers, long distance resellers and many other telco product reselling that only lasted as long as the underlying network providers agreed to supply the commodity. But this is such an intriguing idea that many landline ISPs are going to look at what Charter is doing and wonder why they can’t do the same.