Edging Closer to Satellite Broadband

A few weeks ago Elon Musk’s SpaceX launched two test satellites that are the first in a planned low-orbit satellite network that will blanket the earth with broadband. The eventual network, branded as Starlink, will consist of 4,425 satellites deployed at 700 miles above earth and another 7,518 deployed at around 210 miles of altitude.

Getting that many satellites into orbit is a daunting logistical task. To put this into perspective, the nearly 12,000 satellites needed are twice the number of satellites that have been launched in history. It’s going to take a lot of launches to get these into the sky. SpaceX’s workhorse rocket the Falcon 9 can carry about ten satellites at a time. They also have tested a Falcon Heavy system that could carry 20 or so satellites at a time. If they can make a weekly launch of the larger rocket that’s still 596 launches and would take 11.5 years. To put that number into perspective, the US led the world with 29 successful satellite launches last year, with Russia second with 21 and China with 16.

SpaceX is still touting this as a network that can make gigabit connections to customers. I’ve read the FCC filing for the proposed network several times and it looks to me like that kind of speed will require combining signals from multiple satellites to a single customer and I have to wonder if that’s practical when talking about deploying this networks to tens of millions of simultaneous subscribers. It’s likely that their standard bandwidth offering is going to be something significantly less.

There is also a big question to me about the capacity of the backhaul network that carry signal to and from the satellites. It’s going to take some major bandwidth to handle the volume of broadband users that SpaceX has in mind. We are seeing landline long-haul fiber networks today that are stressed and reaching capacity. The satellite network will face the same backhaul problems as everybody else and will have to find ways to cope with a world where broadband demand doubles every 3 years or so. If the satellite backhaul gets clogged or if the satellites get over-subscribed then the quality of broadband will degrade like with any other network.

Interestingly, SpaceX is not the only one chasing this business plan. For instance, billionaire Richard Branson wants to build a similar network that would put 720 low-orbit satellites over North America. Telesat has launched two different test satellites and also want to deploy a large satellite network. Boeing also announced intentions to launch a 1,000-satellite network over North America. It’s sounding like our skies are going to get pretty full!

SpaceX is still predicting that the network is going to cost roughly $10 billion to deploy. There’s been no talk of consumer prices yet, but the company obviously has a business plan – Musk want to use this business as the primary way to fund the colonization of Mars. But pricing is an issue for a number of reasons. The satellites will have some finite capacity for customer connections. In one of the many articles I read I saw the goal for the network is 40 million customers (and I don’t know if that’s the right number, but there is some number of simultaneous connections the network can handle). 40 million customers sounds huge, but with a current worldwide population of over 7.6 billion people it’s miniscule for a worldwide market.

There are those predicting that this will be the salvation for rural broadband. But I think that’s going to depend on pricing. If this is priced affordably then there will be millions in cities who would love to escape the cable company monopoly, and who could overwhelm the satellite network. There is also the issue of local demand. Only a limited number of satellites can see any given slice of geography. The network might easily accommodate everybody in Wyoming or Alaska, but won’t be able to do the same anywhere close to a big city.

Another issue is worldwide pricing. A price that might be right in the US might be ten times higher than what will be affordable in Africa or Asia. So there is bound to be pricing differences based upon regional incomes.

One of the stickier issues will be the reaction of governments that don’t want citizens using the network. There is no way China is going to let citizens bypass the great firewall of China by going through these satellites. Repressive regimes like North Kora will likely make it illegal to use the network. And even democratic countries like India might not like the idea – last year they turned down free Internet from Facebook because it wasn’t an ‘Indian’ solution.

Bottom line is that this is an intriguing idea. If the technology works as promised, and if Musk can find the money and can figure out the logistics to get this launched it’s going to be another new source of broadband. But satellite networks are not going to solve the world’s broadband problems because they are only going to be able to help some small limited percentage of the world’s population. But with that said, a remote farm in the US or a village in Africa is going to love this when it’s available.

Can Satellites Solve the Rural Broadband Problem?

satelliteA few weeks ago Elon Musk announced that his SpaceX company is moving forward with attempting to launch low earth orbit (LEO) satellites to bring better satellite broadband to the world. His proposal to the FCC would put 4,425 satellites around the globe at altitudes between 715 and 823 miles. This contrasts significantly with the current HughesNet satellite network that is 22,000 miles above the earth. Each satellite would be roughly the size of a refrigerator and would be powered by a solar array.

This idea has been around a long time and I remember a proposal to do something similar twenty years ago. But like many technologies, this really hasn’t been commercially feasible in the past and it took improvements to the underlying technologies to make this possible. Twenty years ago they could not have packed enough processing power into a satellite to do what Musk is proposing. But Moore’s Law suggests that the chips and routers today are at least 500 times faster than two decades ago. And these satellites will also be power hungry and weren’t possible until modern solar power cells were created. This kind of network also requires the ability to make huge numbers of rocket launches – something that was impractical and incredibly expensive twenty years ago. But if this venture works it would provide lucrative revenue for SpaceX, and Elon Musk seems to be good at finding synergies between his companies.

Musk’s proposal has some major benefits over existing satellite broadband. By being significantly closer to the earth the data transmitted from satellites would have a latency of between 25 and 35 milliseconds. This is much better than the 600 milliseconds delays achieved by current satellites and would put the satellite broadband into the same range that is achieved by many ISPs. Current satellite broadband has too much latency to support VoIP, video streaming, or any other live Internet connections like Skype or distance learning.

The satellites would use frequencies between 10GHz and 30GHz, in the Ku and Ka bands. Musk says that SpaceX is designing every component from the satellites to earth gateways and customer receivers. For any of you that want to crawl through specifications, the FCC filing is intriguing.

The large number of satellites would provide broadband capability to a large number of customers, while also blanketing the globe and bringing broadband to many places that don’t have it today. The specifications say that each satellite will have an aggregate capacity of between 17 and 23 Gbps, meaning each satellite could theoretically process that much data at the same time.

The specifications say that the network could produce gigabit links to customers, although that would require making simultaneous connections from several satellites to one single customer. And while each satellite has a lot of capacity, using them to provide gigabit links would chew up the available bandwidth in a hurry and would mean serving far fewer customers. It’s more likely that the network will be used to provide speeds such as 50 Mbps to 100 Mbps.

But those speeds could be revolutionary for rural America. The FCC and their CAF II program is currently spending $9 billion to bring faster DSL or cellular service to rural America with speeds that must be at least 10/1 Mbps. Musk says this whole venture will cost about $10 billion and could bring faster Internet not only to the US, but to the world.

It’s an intriguing idea, and if it was offered by anybody else other than Elon Musk it might sound more like a pipedream than a serious idea. But Musk has shown the ability to launch cutting-edge ventures before. There is always a ways to go between concept and reality and like any new technology there will be bugs in the first version of the technology. But assuming that Musk can raise the money, and assuming that the technology really works as promised, this could change broadband around the world.

This technology would likely be the death knell of slower rural broadband technologies like LTE cellular, DSL, or poorly-deployed point-to-multipoint wireless systems. In today’s world the satellites would even compete well with current landline data products in more urban areas. But over a decade or two the ever-increasing speeds that customers will want will ultimately still be better served by landline connections. Yet for the near future this technology could be disruptive to numerous landline broadband providers.

It’s hard to envision the implications from providing fast broadband around the globe. For example, this would provide a connection to the web that is not filtered by a local government. It would also bring real broadband to any rural place that has available power. In the poorer nations of the world this would be transformational.  It’s hard to over-state the potential impacts that this technology could have around our planet if it’s deployed successfully.

Musk says he would like to launch his first satellite in 2019, so I guess we won’t have to wait too long to see if this can work.  I’ll be watching.