Bringing Broadband to the Arctic

The Arctic region has largely been left out of the broadband arena in the past due to the high cost of building last-mile broadband infrastructure. The primary broadband available in the region has been provided for decades by Iridium Communications, which provided only low-bandwidth connections capable of supporting satellite phones and low-bandwidth monitoring devices. The lack of broadband looks to be changing as multiple satellite companies are targeting the region as a good business opportunity.

Starlink and OneWeb already have polar-orbiting satellites that can serve the region. In fact, the original OneWeb business plan focused on the Arctic as its first priority due to the lack of competition.

Telesat has negotiated to connect to indigenous communities in the Arctic through a partnership with the Canadian government. The government has already provided some grants and last year announced a financing deal that will invest $690 million in preferred equity and $790 million in loans to enable Telesat Lightspeed to complete its low-orbit satellite constellation. The government will also receive warrants that can be exchanged in the future for additional shares of Telesat stock. This adds to the $400 million provided by the government of Quebec. The low-orbit constellation will begin with 298 satellites positioned to deliver speeds up to a gigabit across Canada.

SES plans to serve the Arctic with a fleet of medium-earth-orbit satellites that should start launching by the end of the year. MEO satellites deploy in orbits higher than 1,200 miles but closer than the geostationary satellites at 22,000 miles above the earth. The biggest challenge for these satellites is finding orbits that avoid the high-energy Van Allen radiation belts. The SES business plan is to provide high-bandwidth connections to remote places and in addition to the Arctic, will be pursuing broadband for cruise ships, cellular towers, and government networks.

The Arctic Satellite Broadband Mission (ASBM) is being built by Northop Grumman and is a joint venture between Inmarsat, the British satellite operator, the Norwegian Ministry of Defense, and the U.S. Air Force. These satellites are aimed at providing cellular telephone service and also supporting the military. Two satellites are scheduled to launch by the end of this year and will have highly elliptical orbits that will vary between 5,000 and 27,000 miles above the earth. The orbits can be changed to avoid radiation storms.

The Russian Satellite Communications Company (RSCC) announced plans to launch four satellites in highly elliptical paths within a few years to serve the far north polar regions. I have to wonder if these plans are on hold due to the severe economic sanctions in place against the country.

Satellite broadband is an awesome solution for places where there are likely to be no alternatives. I understand why rural residents of the U.S. are flocking to Starlink since, for many of them, it’s the only workable broadband solution on the horizon. I continue to wonder how satellite broadband will stay competitive in the lower forty-eight after the many grant-funded networks are finally built. But there will always be homes in the U.S. out of reach of landline networks or customers that don’t like the landline ISPs, so it would not be surprising to see the satellite companies with a small but steady customer base south of the Arctic for the long-haul.

But satellite broadband ought to dominate the Arctic for decades to come. It can bring decent bandwidth to remote places that may never be candidates for building landline networks. It will be an interesting change for the area as it goes from barely connected to fully connected.

Can Satellite Broadband be Affordable?

When we first heard of the possibility of broadband from low-orbit satellites, there was a lot of speculation that the technology could bring affordable broadband to the masses around the globe. The latest announcement from Starlink shows that affordable broadband is probably not coming in the immediate future.

Starlink announced a premium tier of service with a $500 monthly fee for 150-500 Mbps. The receiver has a one-time cost of $2,500. The product offers faster speeds by doubling the size of the receiving area of the receiver. These prices are a big step up from the current Starlink broadband product that offers 50-150 Mbps service for $99 per month with a $500 fee for the receiver.

I’ve been thinking about the issues faced by a satellite constellation owner in trying to recover the cost of the network to make a profit. At current costs, it’s incredibly expensive to launch Starlink satellites. It’s rumored that it currently costs about $60 million for one launch that can place 49 satellites into orbit. That’s a cost of over $1.2 million per satellite before considering the cost of the satellite hardware. But this cost is supposed to be dropping due to the ability to reuse rocket components, with near-future costs soon to be around $30 million per launch. That would still mean a cost per satellite of $600,000 each. Elon Musk says his goal is to get the cost per launch down to $10 million, and that would still mean a launch cost per satellite of over $200,000.

These costs wouldn’t be bad if the satellites had some longevity, but it’s estimated that low-orbit satellites will remain in orbit from 5-7 years, meaning a satellite owner must recover its launch costs in a relatively short period of time.

This is not to say that Starlink can’t make money, and I have to assume that the current prices are set so that the company can become profitable. But it’s hard to imagine lowering prices until a satellite company has a large enough customer base to cover operating costs and the continued cost of replacing satellites.

Starlink also admits that it is subsidizing the home receivers it sells for $500. But with mass production, that cost is likely to plummet. But for now, it’s one more financial hurdle to overcome.

The other component of cost to consider is the cost of backhaul. In the U.S., it will be easy for Starlink to build a series of earth stations that can download and upload data with the satellite constellation. We have fiber backhaul routes crisscrossing the country, and there are numerous carriers willing to negotiate good prices with Starlink for connecting earth stations to the Internet.

But this is not going to be so in much of the rest of the planet. Consider places like inland Africa where there are far fewer fiber middle-mile routes, and where the amount of bandwidth is limited and expensive. Lack of backhaul could make it a challenge to operate in markets like Africa.

There are also countries that will block Starlink or that might impose big license fees to deliver the broadband. China is unlikely to allow broadband connections that bypass the Great Firewall of China. India is discussing license fees with Starlink, and could make it expensive to do business there. Those two countries alone contain 36% of the world’s population.

The last complexity faced by any satellite broadband company will be competition from other satellite owners. It’s likely that within five years that we’ll see worldwide coverage from Starlink, OneWeb, and Project Kuiper – and other companies and countries are considering satellite constellations. The industry math will quickly get challenging if there is any downward pressure on prices through competition. Starlink is only going to be able to sell $500 premium connections if no other satellite company offers something less expensive.

Elon Musk has said many times in the last year that there is no guarantee of financial success at Starlink and that the company could easily go bankrupt. The company must be losing money during this early beta stage, but that’s experienced by all new ISPs. Let’s also not forget the stated original reason for funding Starlink. The goal was to create a cash cow that would spin off the funding needed to settle Mars. The need to generate cash isn’t going to tempt the company to have affordable rates. There is a lot of moving parts to operate a satellite business, with many of the long-term costs still unknowable. It will be interesting watching the satellite companies figure out the business on the fly.

Is Space Getting Too Busy?

Satellite broadband made the news again recently when the Chinese government said it had to adjust the orbits of the Chinese space station to avoid collisions with Starlink satellites. China claims it had to make adjustments in July and October of last year.

The Chinese are not the only ones making this claim. In 2020, the CEO of Rocket Lab said that it is becoming increasingly difficult to plot a clear trajectory when launching a rocket. The head of the European space agency recently accused Starlink of “making the rules” for everybody else in the way the company is launching satellites. The recent reaction by Elon Musk to these criticisms is that space is huge and can accommodate tens of billions of satellites.

What seems to be in play here is that there are no international regulations in place to define parameters for space launches. The last international treaty on space is over fifty years old and never envisioned the huge number of satellites we’re already starting to see. Starlink alone already has over 1,700 satellites and plans to launch new satellites twice per month throughout 2022. One earlier Starlink business plan called for over 30,000 satellites.

There have already been a few notable collisions between satellites. The most recent was when the Yunhai-1 Chinese satellite was apparently destroyed in March 2021 from pieces of debris from a Russian Satellite. There is a huge amount of space debris. There are over a million pieces of debris between 1 and 10 centimeters (4 inches) in size. The U.S. Space Surveillance Network was actively tracking 15,000 objects larger than 4 centimeters as of November 2021.

Debris matters because orbiting objects are moving fast – at 150 miles above the earth, a satellite needs to be going 17,500 miles per hour to maintain orbit. A collision with even a small object can be devastating.

Scientists have been warning about space debris for a long time. In 1978, NASA scientist Donald Kessler warned that collisions in space could result in a cloud of debris that would create an effective barrier to launching rockets or sending people into space.

This is no longer a theoretical problem since much of what we do on earth is now reliant on satellites. Most of our cable TV signals are launched from space. GPS relies on a series of satellites. Ships and airplanes navigate with support from satellites. Satellites are used to track weather patterns. There are now satellites tracking and monitoring everything from the movement of foreign armies to the water temperature of the oceans.  There will soon be millions of broadband customers using low-orbit satellites.

It’s hard for any layman to understand the real risks. Some of the controversy likely stems from international wrangling between nations. But there are also a lot of notable scientists that are worried that we might make space unusable.

It will be ironic if the world solves rural broadband with satellites only to find one day that there is too much debris to launch more satellites. It seems like a remote possibility, but some scientists say it’s possible. It makes sense for the international community to come together and work out rules that everybody can agree to.

FCC – Please Do the Right Thing with RDOF

The $42.5 federal BEAD broadband grants that are being funded from the Infrastructure Investment and Jobs Act should be a gamechanger for rural broadband. There will be many hundreds of millions of grants given to each state to fund the construction of broadband networks. This is likely once-in-a-generation funding, so there will only be one chance to do this right.

There is one pending issue that could really gum up the BEAD grants – there are pending RDOF awards that should not be funded. These pending RDOF grants fall into three categories.

First are RDOF auction winners that have probably bitten off more than they can chew. An example of this might be LTD Broadband. I don’t have any inside knowledge of the company, but I’ve seen estimates that the company would need to raise something north of $7 billion dollars to go along with the $1 billion RDOF award. There are likely other similar companies in the auction. The FCC has had almost a year to determine the financial ability of grant winners to fund the rest of the projects they won. If these companies don’t have the needed funding, it’s time for the FCC to cut them loose. This shouldn’t be a hard determination.

The second category is unique. Starlink won nearly a billion dollars of RDOF funding. There are still a lot of unknowns about the company’s capabilities. I know some of the RDOF areas won by Starlink are heavily wooded, and from what I hear, that’s a big problem for the technology. There are also still questions about the ability of Starlink to serve every home in a grant area – which is what the RDOF requires. I have nothing against Starlink, and if I lived in a rural area, I would have been first in line for the beta test. But the company is still an unproven technology in terms of being able to serve everybody. The company is still a start-up with no guarantee of success or longevity. At the end of the day, Starlink doesn’t meet the basic requirement that federal funding should only go to companies that can guarantee to meet the requirements of the award.

Finally, are the RDOF auction winners that claim to be able to deliver gigabit wireless technology. Like Starlink, these are not field-proven technologies and likely will never deliver what is being promised. Over the last year, I haven’t talked to a single engineer who thinks it’s possible to deliver a wireless gigabit to every customer in rural Census blocks with gigabit wireless. I have no doubt that the new wireless technologies have the capability of being a lot faster than current fixed wireless technology. But these grants weren’t awarded to deliver a few hundred megabits per second. These grant winner should be tossed for overclaiming the technology, since doing so gave them an unfair advantage in the auction. If they had bid with the ability to deliver 200 Mbps the auction results would have been very different. These companies gamed the auction rules and that alone should have invalidated the awards. Unfortunately, the FCC might be ready to make these awards, having recently awarded funding to Resound Networks to provide gigabit wireless broadband.

It’s obvious that the FCC is already wrestling with all of these issues because it’s been eleven months since the RDOF winners filed their long-form information. But the FCC must know that the BEAD grants change everything. If it had known that BEAD grants were coming, the FCC probably would not have held the reverse auction. This new federal grant money changes the equation and brings a new paradigm that should make it easier for the FCC to make up its mind about questionable RDOF awards.

If the FCC gets this wrong, then the RDOF areas in question won’t be seeing the same broadband solutions that are coming everywhere else. The BEAD grants make it easy for the FCC to reject applicants that have not demonstrated the financial wherewithal to fund the promised RDOF solution. The BEAD grants should make it easy to reject Starlink – the company is still free to market broadband to all of rural America, and it already has a huge waiting list of people willing to buy service. The BEAD grants should make it easier for the FCC to admit it erred in letting bidders overclaim technology.

It’s not going to be easy for the FCC to publicly admit that it made some big mistakes in the RDOF auction. Most of these issues could have been avoided if the FCC had pre-screened applicants. Any technology that was not already proven to work in the real world should have been excluded from the auction. Applicants should have been given a dollar limit for participation in the auction based on their balance sheet. But the FCC has a chance to set this right by rejecting the questionable awards and letting the folks that live in these areas have a chance for a better and more permanent broadband solution through BEAD grants. FCC – please do the right thing.

The Fight Over 12 GHz Spectrum

For an agency that has tried to wash its hands from regulating broadband, the FCC finds itself again trying to decide an issue that is all about broadband. There is a heavyweight battle going on at the FCC over how to use 12 GHz spectrum, and while this may seem like a spectrum issue, it’s all about broadband.

12 GHz spectrum is key to several broadband technologies. First, this is the spectrum that is best suited for transmitting data between the earth and satellite constellations. The only way Starlink is going to be able to grow to serve millions of remote customers in the U.S. is by having enough backhaul to fuel the huge amounts of data that will be passed to serve that many customers. Lack of backhaul bandwidth will significantly limit the total number of customers that can be served and is an obvious major concern of the satellite companies.

It turns out that 12 GHz is also the best spectrum for transmitting large amounts of data with 5G. The carriers have been dabbling with the higher millimeter-wave spectrum, but it’s turning out that there are squirrelly aspects of millimeter-wave spectrum that make it less than ideal in real-world wireless deployments. The 12 GHz spectrum might be the best hope for carriers to be able to deliver gigabit+ wireless drops to homes. Verizon has been deploying fiber-to-the-curb technology using mid-range spectrum and seeing speeds in the range of 300 Mbps. Using the 12 GHz spectrum could provide a reliable path to multi-gigabit wireless drops.

The big question facing the FCC is if 12 GHz can somehow be used to satisfy both needs, pitting the 5G carriers against the satellite carriers. As an aside, before talking more about the issue, I must observe that the satellite companies bring a new tone into FCC proceedings. Their FCC filings do everything except call the other side a bunch of dirty scoundrels. Probably only those who read a lot of FCC documents would notice this, but it’s something new and refreshing.

The current argument before the FCC comes from filings between Starlink and RS Access, which is associated with Michael Dell, who owns a lot of the spectrum in question. But this is part of the larger ongoing battle, and there have been skirmishes that also involved Dish Networks, which is the largest owner of this spectrum.

The FCC will have to somehow untie the Gordian knot on a tough issue. As is to be expected with any use of spectrum, interference is always a major concern. The usefulness of any band of spectrum can be negated by interference, so carriers only want to deploy wireless technologies that have minimal and controllable interference issues. Both sides in the 12 GHz fight have trotted out wireless engineers who support their positions. RS Access says that spectrum can be shared between satellite and terrestrial usage, supporting the idea of not giving more spectrum solely to Starlink. Starlink says the RS Access engineers are lying and wants dedicated spectrum for satellite backhaul. I don’t know how the FCC can sort this out because the only way to really know if spectrum can be shared is to try it.

What I find most unusual about the fight is that the FCC is being dragged into a broadband issue. The last FCC Commission, Ajit Pai, did his best to wash broadband out of the vocabulary at the FCC. But in today’s world, almost everything the FCC does, other than perhaps chasing robocallers, is ultimately about broadband. While this current 12 GHz fight might look like a spectrum battle to an outsider, it’s all about broadband.

Keeping Track of Satellites

The topic of satellite broadband has been heating up lately. Elon Musk’s StarLink now has over 540 broadband satellites in the sky and is talking about starting a few beta tests of the technology with customers. OneWeb went into bankruptcy but it being bought out by a team consisting of the British government and Bharti Airtel, the largest cellular company in India. Jeff Bezos has continued to move forward with Project Kuiper and the FCC recently gave the nod for the company to move ahead.

These companies have grandiose plans to launch large numbers of satellites. Starlink’s first constellation will have over 4,000 satellites – and the FCC has given approval for up to 12,000 satellites. Elon Musk says the company might eventually grow to over 30,000 satellites. Project Kuiper told the FCC they have plans for over 3.300 satellites. The original OneWeb plan called for over 1,200 satellites. Telesat has announced a goal of launching over 500 satellites. A big unknown is Samsung, which announced a plan a year ago to launch over 4,600 satellites. Even if all of these companies don’t fully meet their goals, there are going to be a lot of satellites in the sky over the next decade.

To put these huge numbers into perspective, consider the number of satellites ever shot into space. The United Nations Office for Outer Space Affairs (NOOSA) has been tracking space launches for decades. They reported at the end of 2019 that there have been 8,378 objects put into space since the first Sputnik in 1957. As of the beginning of 2019, there were 4,987 satellites still in orbit, although only 1,957 were still operational.

There is a lot of concern in the scientific community about satellite collisions and space junk. Low earth satellites travel at a speed of about 17,500 miles per hour to maintain orbit. Satellites that collide at that speed create many new pieces of space junk, also traveling at high speed. NASA estimates there are currently over 128 million pieces of orbiting debris smaller than 1 square centimeter, 900,000 objects between 1 and 10 square centimeters, and 22,000 pieces of debris larger than 4 inches.

NASA scientist Donald Kessler described the dangers of space debris in 1978 in what’s now described as the Kessler syndrome. Every space collision creates more debris and eventually there could be a cloud of circling debris that will make it nearly impossible to maintain satellites in space. While scientists think that such a cloud is almost inevitable, some worry that a major collision between two large satellites, or malicious destruction by a bad actor government could accelerate the process and could quickly knock out all of the satellites in a given orbit.

There has only been one known satellite collision when a dead Russian satellite collided with an Iridium communications satellite over a decade ago. That satellite kicked off hundreds of pieces of large debris. There have been numerous near misses, including with the manned Space Station. There was another near-miss in January between the defunct Poppy VII-B military satellite from the 1960s and a retired IRAS satellite that was used for infrared astronomy in the 1980s. It was recently reported that Russia launched a new satellite that passed through one of StarLink’s newly launched swarms.

The key avoiding collisions is to use smart software to track trajectories of satellites and provide ample time for the satellite owners to make corrections to the orbital path to avoid a collision. Historically, that tracking role has been done by the US military – but the Pentagon has made it clear that it is not willing to continue in this role. No software is going to help avoid collisions between dead satellites like the close-call in January. However, all newer satellites should be maneuverable to help avoid collisions as long as sufficient notice is provided.

A few years ago, the White House issued a directive that would give the tracking responsibility to the Commerce Department under a new Office of Space Commerce. However, some in Congress think the proper agency to track satellites is the Federal Aviation Agency which already tracks anything in the sky at lower levels. Somebody in government needs to take on this role soon, because the Pentagon warns that its technology is obsolete, having been in place for thirty years.

The need for tracking is vital. Congress needs to decide soon how this is to be done and provide the funding to implement a new tracking system. It would be ironic if the world solves the rural broadband problem using low orbit satellites, only to see those satellites disappear in a cloud of debris. If the debris cloud is allowed to form it could take centuries for it to dissipate.

An Update on LEO Satellites

A lot of rural America continues to hope that low orbit satellite (LEO) service will provide a broadband alternative. It’s been a while since I’ve covered the status of the companies proposing to deploy constellations of satellites for providing broadband.

In March, OneWeb filed for Chapter 11 restructuring when it was clear that the company could not raise enough cash to continue the research and development of the satellite product. In July, a bankruptcy court in New York approved a $1 billion offer to take over the company filed jointly by the British Government and Bharti Airtel. Airtel is India’s largest cellular company. The restructured company will be owned with 45% stakes by Britain and Bharti Airtel, with the remaining 10% held by Softbank of Japan, the biggest original shareholder of OneWeb. Other earlier investors like the founders, Intelsat, Totalplay Telecommunications of Mexico, and Coca-Cola have been closed out of ownership by the transaction.

There is speculation that the British government purchased the company to create tech jobs in the country and that all R&D and manufacturing for OneWeb would immediately shift to England from Florida.

Of more concern for rural broadband is speculation that the mission of the company will change. Greg Wyler, the original CEO of the company had a vision of using the satellites to bring broadband to parts of the world that have no broadband. He chose a polar orbit for the satellites and was going to launch the business by serving Alaska and the northern territories of Canada like Nunavut. I’ve seen speculation that the revised company is likely to concentrate instead on wholesale connections to telcos and ISPs, such as providing backhaul for rural cell sites.

Elon Musk’s satellite venture StarLink was recently in the news when the company said it was going to raise ‘up to $1 billion’ to continue the development of the business. The company still has a long and expensive road to success. The company has raised over $3.5 billion to date before this latest raise, but a recent Bloomberg article estimates that the company will need to raise an additional $50 billion between now and 2033, which is when the company is projected to be cash-positive.

StarLink now has over 540 satellites in orbit, but the business plan calls for over 4,000. Keeping the constellation in place will be an ongoing challenge since the satellites have an estimated life of 5 to 6 years. Starlink will forever have to be launching new satellites to replace downed satellites.

The US government and the FCC seem to be in StarLink’s corner. The FCC is still evaluating if it will allow StarLink to participate in the upcoming RDOF grants auction in October. It would be incredibly unusual to award giant federal grants for a product that is still on the drawing board and for an ISP that hasn’t raised 10% of their needed funding.

StarLink recently made a very-public announcement that it was looking for beta customers – likely as a way to spur fundraising. Early Starlink customers will likely see blazingly fast speeds, which would happen for any broadband technology that could devote the bandwidth from one server to connect to one or two customers. The bandwidth delivered on a fully-subscribed satellite network will be far less – but that won’t stop the company from using a beta test to set unrealistic expectations of future satellite broadband speeds.

The last LEO player that is still active is Jeff Bezos venture that is still using the preliminary name of Project Kuiper. The FCC recently approved the licensing for Project Kuiper to move forward. Immediately following the FCC approval, Jeff Bezos announced that he will be investing $10 billion in the business. This ability to self-fund likely gives Project Kuiper an advantage over other competitors. It was reported that just for the month of July that Bezos’s net worth had climbed by $9 billion.  Funding is going to be a constant hurdle for the other two major competitors, but Project Kuiper might be the fastest to deploy if funding is not an issue.

The FCC approval pf Project Kuiper and the funding announcement by Bezos came at the same time that Starlink is seeking another round of financing and is trying to get into the FCC auction. It’s going to be interesting to see how the battle between two billionaires unfolds – my bet is on Amazon due to easy access to funding.

The FCC Muddles the RDOF Grants

Last week the FCC ‘clarified’ the RDOF rules in a way that left most of the industry feeling less sure about how the auction will work.  The FCC is now supposedly taking a technologically neutral position on the auction. That means that the FCC has reopened the door for low-earth orbit satellites. Strangely, Chairman Ajit Pai said that the rules would even allow DSL or fixed wireless providers to participate in the gigabit speed tier.

Technologically neutral may sound like a fair idea, but in this case it’s absurd. The idea that DSL or fixed wireless could deliver gigabit speeds is so far outside the realm of physics as to be laughable. It’s more likely that these changes are aimed at allowing the providers of satellite, DSL, and fixed wireless providers to enter the auction at speeds faster than they can deliver.

For example, by saying that DSL can enter the auction at a gigabit, it might go more unnoticed if telcos enter the auction at the 100./10 Mbps tier. There is zero chance for rural DSL to reach those speeds – the CAF II awards six years ago didn’t result in a lot of rural DSL that is delivering even 10/1 Mbps. It’s worth remember that the RDOF funding is going to some of the most remote Census blocks in the country where homes are likely many miles from a DSL hub and also not concentrated in pockets – two factors that account for why rural DSL often has speeds that are not a lot faster than dial-up.

Any decision to allow low orbit satellites into the auction has to be political. There are members of Congress now pushing for satellite broadband. In my State of North Carolina there is even a bill in the Senate (SB 1228) that would provide $2.5 million to satellite broadband as a preferred solution for rural broadband.

The politics behind low orbit satellite broadband is crazy because there is not yet any such technology that can deliver broadband to people. Elon Musk’s satellite company currently has 362 satellites in orbit. That may sound impressive, but a functional array of satellites is going to require thousands of satellites – the company’s filed plan with the FCC calls for 4,000 satellites as the first phase deployment.

I’ve seen a lot of speculation in the financial and space press that Starlink will have a lot of challenge in raising the money needed to finish the constellation of satellites. A lot of the companies that were going to invest are now reluctant due to COVID-19. The other current competitor to Starlink is OneWeb, which went bankrupt a few months ago and may never come out of receivership. Jeff Bezos has been rumored to be launching a satellite business but still has not launched a single satellite.

The danger of letting these various technologies into the RDOF process is that a lot of rural households might again get screwed by the FCC and not get broadband after a giant FCC grant. That’s what happened with CAF II where over $9 billion was handed to the big telcos and was effectively washed down the drain in terms of any lasting benefits to rural broadband.

It’s not hard to envision Elon Musk and Starlink winning a lot of money in the CAF II auction and then failing to complete the business plan. The company has an automatic advantage over any company they are bidding against since Starlink can bid lower than any other bidder and still be ahead of the game. It’s not an implausible scenario to foresee Starlink winning every contested Census block.

Allowing DSL and fixed wireless providers to overstate their technical capacity will be just as damaging. Does anybody think that if Frontier wins money in this auction that they will do much more than pocket it straight to the bottom line? Rural America is badly harmed if a carriers wins and the RDOF money and doesn’t deliver the technology that was promised – particularly if that grant winner unfairly beat out somebody that would have delivered a faster technology. One has to only look back at the awards made to Viasat in the CAF II reverse auction to see how absurd it is when inferior technologies are allowed in the auction.

Probably the worst thing about the RDOF rules is that somebody who doesn’t deliver doesn’t have to give back all of the grant money. Even should no customer ever be served or if no customer ever receives the promised speeds, the grant winner gets to keep a substantial percentage of the grant funding.

As usual, this FCC is hiding their real intentions under the technology neutral stance. This auction doesn’t need the FCC to be ‘technology neutral’, and technologies that don’t exist yet today like LEO satellites or technologies that can’t deliver the speed tiers should not be allowed into the auction. I’m already cringing at the vision of a lot of grant winners that have no business getting a government subsidy at a time when COVID-19 has magnified the need for better rural broadband.

Will Starlink be in the RDOF Auction?

Jonathan Chambers of Conexon wrote an interesting blog where he assumes that the FCC has already allowed Starlink, the satellite company owned by Elon Musk, into the top tier in the RDOF auction. If so this would be a disastrous decision by the FCC.

The RDOF auction will be a reverse auction, but with a twist. In a reverse auction, the bidder willing to take the least amount of money to provide service to a given geographic service area wins the auction. However, the twist is that the FCC is giving priority to gigabit broadband providers. If there is still a gigabit provider left in a given area after a few rounds of bidding, that bidder wins if the other bidders offer slower technologies. This twist was added to favor fiber deployment, which the FCC understands is the best broadband solution – when a community gets fiber they are set for the rest of the century and the FCC can scratch fiber-served communities off their worry list. The highest tier also favors traditional cable companies that decide to serve areas around towns where they offer gigabit broadband.

If Starlink is allowed to bid as a gigabit provider then the whole auction gets turned upside down. In areas where Starlink is bidding against fixed wireless or other slower technologies, Starlink would always win by simply staying in the auction for a few rounds. To make matters worse, Starlink could bid against fiber providers until the grant awards get so low that a fiber provider drops out of the auction.

If Starlink is considered a gigabit provider and bids on every RDOF cluster, it could theoretically win the entire $16 billion auction. That would mean no money for fiber networks or cable company networks. It would mean no money for fixed wireless networks or other technologies that promise to deliver 100 Mbps broadband or slower.

A natural question to ask is why worry about this if Starlink can deliver gigabit broadband to all of the rural areas covered by the RDOF grants? The easy answer is to that question is that nobody outside of Starlink has any idea what the company can deliver (and even Starlink probably is only guessing at the bandwidth that will come from a fully-deployed network). It’s certainly possible that Starlink satellites can make a 1-gigabit connection to earth – they have enough satellites already in the sky that the company can probably demonstrate this. We know that the recently bankrupt OneWeb demonstrated a 400 Mbps connection from a satellite to an earth station – but that has nothing to do with the amount of bandwidth that can be delivered to many users at the same time. Networks get slower and bog down as users are added and as bandwidth is oversubscribed.

As Chambers suggests, before the FCC offers any public money to Starlink, the company needs to publicly fully disclose its network architecture and capabilities. We already know what fiber networks, cable networks, and fixed wireless networks can deliver. Before opening the public purse-strings to Starlink, let the whole world see how they plan to deploy, so that smart network engineers can opine if fast speeds are possible with a fully-deployed satellite constellation.

An even bigger worry is that Elon Musk’s SpaceX company looks to be in financial trouble. A recent blog by TMF Associates, a consultant in the satellite industry, provides ample evidence that SpaceX has big financial woes. The company is far behind its original business plan of raising money for rocket launches and is going to spend a lot of resources this year sending up the planned 1,500 Starlink satellites. TMF says that the company is burning through $100 million per month in operating expenses. A more immediate worry for SpaceX and Starlink is the impact of having to send staff home due to COVID-19. What’s going to happen this year in the supply chain for satellites and their components? According to the figures cited by TMF Associates, Elon Musk and Starlink likely must win big dollars out of the RDOF auction just to keep SpaceX afloat.

Just because LEO satellite broadband has big promise is no guarantee that we’ll ever see an iota of bandwidth out of the sky. OneWeb recently declared bankruptcy and blamed COVID-19, but the company was already out of cash before the pandemic. The company needs a buyer to emerge out of the bankruptcy and the company might just evaporate into obscurity.

I have always been hopeful that Starlink can provide decent rural broadband. This might be the only way to get broadband to the most remote customers in the country. But I’ve been troubled that the company has still never made any public claims about the speeds they will be able to deliver after mass launches, or the price they are planning to charge. On March 20, the FCC granted Starlink up to 1 million licenses for earthside connections to the satellite constellation. That does not sound like a network that is going to solve the broadband shortage for tens of millions of rural homes and businesses.

I’ve always guessed that the company hasn’t disclosed any details because the speeds will be unspectacular – at least in terms of attracting the billions of investor dollars needed to complete the satellite constellation. Much of rural America would be thrilled in Starlink can mass-deliver 50 Mbps or 100 Mbps at an affordable price. But those kinds of speeds won’t attract investors and don’t rate a top tier designation for Starlink in the RDOF auction.

If Starlink ends up in the RDOF auction at a top tier designation without the needed public disclosure then Elon Musk will have sold a bill of goods to the FCC – which is badly searching for a big rural broadband win. However, it will be a disaster if most of this money goes to Starlink and they then deliver mediocre speeds, or high prices – or even worse, never fully deploy. There are still plenty of doubters that Starlink and SpaceX can deploy the 6,000 promised satellites for the first constellation, let alone up to 30,000 more that Musk has promised.

My biggest fear is that a lot of the grant money will go to Starlink and they then fizzle or underperform. If so we will have wasted the biggest pile of grant money ever offered to improve rural broadband. Before Starlink grabs billions of taxpayers dollars – money that each of us paid from the fees added to our telephone and cellular bills – the public deserves a full disclosure from Starlink on the realities of their technology, their business plan, and their financial health. Without that they shouldn’t be allowed within 400 miles of the RDOF auction.

Low-orbit Satellite Security

I’ve been watching the progress of the low-orbit satellite providers which are promising to bring broadband solutions across the planet. There has been some serious movement since the last time I discussed their status.

On January 29, Starlink launched its latest round of low-orbit satellites, bringing the number in space to 242. Not all of these will be delivering broadband. The first half dozen satellites were test units to try out various concepts. Starlink will use 10 of the most recent batch to test the ability to ‘de-orbit’ and bring satellites back to earth.

The latest Starlink satellites weigh 260 kilograms, up from 227 kilograms for the first satellites launched in May 2019. The latest satellites are designed to be 100% demisable, meaning they will completely burn up in the atmosphere upon reentry.

Starlink still has a long way to go to meet its business plan. If they meet all of the planned launches this year, they’ll have 1,500 satellites in orbit. They’ve told the FCC that they plan to have 6,000 satellites in orbit by the end of 2024 and 12,000 by the end of 2027. As they add new satellites the company must also replace the short-lived satellites that only have a planned life of about five years. That means by 2026 they’ll have to launch 1.200 satellites a year forever just to maintain the first fleet of 6,000 satellites.

We also saw some progress being made by OneWeb, the satellite company founded by Greg Wyler with backing from Virgin, Airbus, SoftBank, and Qualcomm. The company launched 6 satellites last year. They recently launched 34 more satellites and the company’s goal is to put 200 satellites in orbit this year.

These launches show that the industry is for real and that over the next few years we’ll see big numbers of low-orbit satellites in the sky. We finally heard just last week from Elon Musk that he does not intend to compete with rural ISPs and will only sell satellite broadband in the most remote places. He still hasn’t disclosed prices – but if he doesn’t compete with existing ISPs he’s not going to have to be competitively priced. Starlink hints that it might add some customers by the end of this year, but the serious launch of broadband service will start next year.

It’s starting to feel odd that these companies won’t talk about broadband speeds. Like with any broadband technology, the degree of oversubscription will affect broadband performance. The first customers to use the satellites might see blazingly fast speeds – but speeds will lower quickly as customers are added. One of the biggest temptations facing these companies will  be to oversubscribe the technology.

Like with any new technology, satellite broadband brings a new set of worries. There is a recent article on Fastcompany by William Akoto asking how we’re going to protect satellite fleets from hacking. If the proposed satellite constellations grow as promised, there will be tens of thousands of satellites circling the earth delivering broadband. Akoto points out that the satellite supply chain is far from secure and open to tampering. The satellites are being constructed by a number of different vendors using off-the-shelf components. The satellites are not much more than a router connected to a solar array.

It’s clear that there are virtually no hardware or software system that can’t be hacked by a determined effort. The satellites will fly over every country on earth, giving ample opportunity for hackers to hack into satellites directly overhead. The satellites will be controlled by earth station hubs, which also might be hacked in the same manner that happens to big corporate server farms.

The consequences of hacking for satellites are direr than with land-based technology. Hackers could turn satellites off making them dead weights in space. They could rearrange the solar collectors to make them run out of power. Hackers could direct all satellites to come back to earth and burn up in the atmosphere.

In the worse scenario, hackers could crash satellites together creating a lot of space debris. NASA scientist Donald Kessler described the dangers of space debris in 1978 in what’s now described as the Kessler syndrome. Every space collision creates more debris and eventually creates a cloud of circling debris that makes it impossible to maintain satellites in space. Many scientists think such a cloud is almost inevitable, but malicious hacking could create such a cloud quickly.

Hacking won’t only affect rural broadband. The ability of satellites to connect remote locations into a unified network is going to be attractive to a wide range of industries. It’s not hard to imagine the satellite constellations being used to connect to critical infrastructure like rural electric grids, rural dams, and industries of all sorts that connect to rural or third-world locations.

Industry experts are already calling for regulation of satellite security. They believe that governments need to step in to mandate that satellite constellations be as safe as possible. While this could be done voluntarily by the industry there doesn’t seem to be any such effort afoot. The consequences of not getting this right could be a disaster for the planet.