Amazon Joins the Broadband Space Race

I wrote a blog just a few weeks ago talking about how OneWeb had fully leaped into the race to place broadband satellites by launching a few test satellites and also by raising a few more billion dollars to fund the venture.

It’s been rumored for several years that Amazon was also interested in the idea, but their plans have been under wraps. It just came to light that Amazon has taken the first public steps and had the FCC file paperwork with the International Telecommunications Union to make notice of Amazon’s intent to launch satellites.

Amazon filed with the FCC under the name of Kuiper Systems LLC. Space fans will recognize the corporate name as a reference to the Kuiper belt, which is the area of the solar system past Neptune that is believed to contain numerous comets, asteroids and other small objects made largely of ice.

Amazon has big plans and the ITU filing said the company wants to launch a constellation of 3,236 satellites in low earth orbit. That’s 784 satellites in orbit at 367 miles above the earth, 1,296 in orbit at 379 miles, and 1,156 in orbit at 391 miles. Added to the other companies that are talking about getting into the business that’s now more than 10,000 planned satellites.

We know that Jeff Bezos is serious about space. He owns a rocket business, Blue Origins, that is developing an orbital-class rocket called the New Glenn. That company already has some future contracts to make private launches for OneWeb and Telesat. Amazon also recently launched a cloud computing service knows as AWS Ground Station that is intended to provide communications data links between earth and object in outer space. We also found out recently that Bezos kept 100% control of Blue Origins as part of his divorce settlement.

None of the low-orbit satellite ventures have talked about broadband speeds, prices or customer penetration goals. The only one making any announcement was SpaceX who said that his Starlink satellites would be capable of making a gigabit connection to earth. But that’s a far cry from a realistic estimate of a broadband product and is the satellite version of the Sprint cellphone test that showed that millimeter wave spectrum could deliver gigabit speeds to a cellphone. It can be done but is incredibly hard and would involve synching big data pipes from multiple satellites to a single customer.

We got another clue recently when OneWeb asked the FCC for permission to eventually create 1 million links to earth-based receivers, meaning customers. That puts some perspective on the satellites and shows that they are not trying to bring broadband to every rural customer. But still, one million satellite connections would represent about 10% of the rural homes in the US that don’t have broadband today. If that’s their US goal it automatically tells me that prices will likely be high.

NASA and others in charge of space policy have also started talking recently about the potential dangers from so many objects in orbit. We don’t know the size of the Amazon satellites yet. But Elon Musk said his satellites would range in size from a refrigerator down to some that are not larger than a football. NASA is worried about collisions between manned space flights with satellites and space debris.

Amazon is still early in the process. They haven’t yet filed a formal proposal to the FCC discussing their technology and plans. They are several years behind OneWeb and Starlink in terms of getting a test satellite into orbit. But an Amazon space venture has the built-in advantage of being able to advertise a satellite broadband product on the Amazon website where the vast majority of Americans routinely shop. I can envision Amazon measuring the broadband speed of a customer connected to the Amazon website and popping up an offer to buy faster broadband.

It’s absolutely impossible to predict the impact these various satellite companies will have on US broadband. A lot of their impact is going to depend upon the speeds and prices they offer. A lot of rural America is starting to see some decent speeds offered by WISPs with newer radios. Every year some pockets of of rural America are getting fiber and gigabit speeds. Where might the satellites fall into that mix? We can’t forget that the need for broadband is still doubling every three years, and one has to consider the speeds that homes will want a decade from now – not the speeds households want today. We’re at least a few years from seeing any low-orbit broadband connections and many years away from seeing the swarm of over 10,000 satellites that are planned for broadband delivery.

One-Web Launches Broadband Satellites

Earlier this month OneWeb launched six test satellites intended for an eventual satellite fleet intended to provide broadband. The six satellites were launched from a Soyuz launch vehicle from the Guiana Space Center in Kourou, French Guiana.

OneWeb was started by Greg Wyler of Virginia in 2012, originally under the name of WorldVu. Since then the company has picked up heavy-hitter investors like Virgin, Airbus, SoftBank and Qualcomm. The company’s plan is to launch an initial constellation of 650 satellites that will blanket the earth, with ultimate deployment of 1,980 satellites. The plans are to deploy thirty of the sixty-five pound satellites with each launch. That means twenty-two successful launches are needed to deploy the first round.

Due to the low-earth orbits of the satellites, at about 745 miles above earth, the OneWeb satellites will avoid the huge latency that is inherent from current satellite broadband providers like HughesNet, which uses satellites orbiting at 22,000 miles above the earth. The OneWeb specifications filed with the FCC talks about having latency in the same range as cable TV networks in the 25-30 millisecond range. But where a few high-orbit satellites can see the whole earth, the big fleet of low-orbit satellites is needed just to be able in see everywhere.

The company is already behind schedule. The company had originally promised coverage across Alaska by the end of 2019. They are now talking about having customers demos sometime in 2020 with live broadband service in 2021. The timeline matter for a satellite company because the bandwidth license from the FCC requires that they launch 50% of their satellites within six years and all of them within nine years. Right now, OneWeb and also Elon Musk’s SpaceX have both fallen seriously behind the needed deployment timeline.

The company’s original goal was to bring low-latency satellite broadband to everybody in Alaska. While they are still talking about bringing broadband to those who don’t have it today, their new business plan is to sell directly to airlines and cruise ship lines and to sell wholesale to ISPs who will then market to the end user.

It will be interesting to see what kinds of speeds will really be delivered. The company talks today about a maximum speed of 500 Mbps. But I compare that number to the claim that 5G cellphones can work at 600 Mbps, as demonstrated last year by Sprint – it’s possible only in a perfect lab setting. The best analog to a satellite network is a wireless transmitter on a tower in a point-to-multipoint network. That transmitter is capable of making a relatively small number of big-bandwidth connections or many more low-bandwidth connections. The economic sweet spot will likely be to offer many connections at 50 – 100 Mbps rather than fewer connections at a higher speed.

It’s an interesting business model. The upfront cost of manufacturing and launching the satellites is high. It’s likely that a few launches will go awry and destroy satellites. But other than replacing satellites that go bad over time, the maintenance costs are low. The real issue will be the bandwidth that can be delivered. Speeds of 50 – 100 Mbps will be welcomed in the rural US for those with no better option. But like with all low-bandwidth technologies – adequate broadband that feels okay today will feel a lot slower in a decade as household bandwidth demand continues to grow. The best long-term market for the satellite providers will be those places on the planet that are not likely to have a landline alternative – which is why they first targeted rural Alaska.

Assuming that the low-earth satellites deliver as promised, they will become part of the broadband landscape in a few years. It’s going to be interesting to see how they play in the rural US and around the world.

The Flood of New Satellite Networks

I wrote a blog a few months ago about SpaceX, Elon Musk’s plan to launch a massive network starting with over 4,400 low-orbit satellites to blanket the world with better broadband. SpaceX has already launched the first few test satellites to test the technology. It seems like a huge logistical undertaking to get that many satellites into orbit and SpaceX is not the only company with plans for satellite broadband. Last year the FCC got applications for approval for almost 9,000 different new communications satellites. Some are geared to provide rural broadband like SpaceX, but others are pursuing IoT connectivity, private voice networks and the creation of space-based backhaul and relay networks.

The following companies are targeting the delivery of broadband:

Boeing. Boeing plans a network of 2,956 satellites that will concentrate on providing broadband to government and commercial customers worldwide. They intend to launch 1,396 satellites within the next six years. This would be the aerospace company’s first foray into being an ISP, but they have experience building communications satellites for over fifty years.

OneWeb. The company is headquartered in Arlington, Virginia and was founded by Greg Wyler. The company would be a direct competitor to SpaceX for rural and residential broadband and plans a network of over 700 satellites. They have arranged launches through Virgin Galactic, the company founded by Richard Branson. The company plans to launch its first satellite next year.

O3b. The company’s name stands for the ‘other 3 billion’ meaning those in the world with no access to broadband today. This company is also owned by Greg Wyler. They already operate a few satellites today that provide broadband to cruise ships and to third-world governments. Their plan is to launch 24 additional satellites in a circular equatorial orbit. Rather than launching a huge number of small satellites they plan an interconnected network of high-capacity satellites.

ViaSat. The company already provides rural broadband today and plans to add an additional 24 satellites at an altitude of about 4,000 miles. The company recently launched a new ViaSat-2 satellite this year to augment the existing broadband satellite service across the western hemisphere. The company is promising speeds of up to 100 Mbps. In addition to targeting rural broadband customers the satellite is targeting broadband delivery to cruise ships and airplanes.

Space Norway. The company wants to launch two satellites that specifically target broadband delivery to the Arctic region in Europe, Asia and Alaska.

The business plans of the following companies vary widely and shows the range of opportunities for space-based communications:

Kepler Communications. This Canadian company headquartered in Toronto is proposing a network of up to 140 tiny satellites the size of a football which will be used to provide private phone connectivity for shipping, transportation fleets and smart agriculture. Rather than providing broadband, the goal is to provide private cellphone networks to companies with widely dispersed fleets and locations.

Theia Holdings. The company is proposing a network of 112 satellites aimed at telemetry and data gathering for services such as weather monitoring, agricultural IoT, natural resource monitoring, general infrastructure monitoring and security systems. The network will consist almost entirely of machine to machine communication.

Telesat Canada. This Canadian company already operates satellites today that provide private voice communications networks for corporate and government customers. The company is launching two new satellites to supplement the 15 already in orbit and has plans for a network consisting of at least 117 satellites. The company’s largest targeted customer is the US Military.

LeoSat MA. The company is planning a worldwide satellite network that can speed a transmission around the globe about 1.5 times faster than terrestrial fiber networks. Their market will be large businesses and governments that need real-time communication around the globe for applications like stock exchanges, business communications, scientific applications and government communications.

Audacy Corp. The company want to provide the first satellite network aimed at providing communications between satellites and spacecraft. Today there is a bandwidth bottleneck between terrestrial earth stations and satellites and Audacy proposes to create a space-only broadband relay network to enable better communications between satellites, making them the first space-based backbone network.