Can Satellites Solve the Rural Broadband Problem?

satelliteA few weeks ago Elon Musk announced that his SpaceX company is moving forward with attempting to launch low earth orbit (LEO) satellites to bring better satellite broadband to the world. His proposal to the FCC would put 4,425 satellites around the globe at altitudes between 715 and 823 miles. This contrasts significantly with the current HughesNet satellite network that is 22,000 miles above the earth. Each satellite would be roughly the size of a refrigerator and would be powered by a solar array.

This idea has been around a long time and I remember a proposal to do something similar twenty years ago. But like many technologies, this really hasn’t been commercially feasible in the past and it took improvements to the underlying technologies to make this possible. Twenty years ago they could not have packed enough processing power into a satellite to do what Musk is proposing. But Moore’s Law suggests that the chips and routers today are at least 500 times faster than two decades ago. And these satellites will also be power hungry and weren’t possible until modern solar power cells were created. This kind of network also requires the ability to make huge numbers of rocket launches – something that was impractical and incredibly expensive twenty years ago. But if this venture works it would provide lucrative revenue for SpaceX, and Elon Musk seems to be good at finding synergies between his companies.

Musk’s proposal has some major benefits over existing satellite broadband. By being significantly closer to the earth the data transmitted from satellites would have a latency of between 25 and 35 milliseconds. This is much better than the 600 milliseconds delays achieved by current satellites and would put the satellite broadband into the same range that is achieved by many ISPs. Current satellite broadband has too much latency to support VoIP, video streaming, or any other live Internet connections like Skype or distance learning.

The satellites would use frequencies between 10GHz and 30GHz, in the Ku and Ka bands. Musk says that SpaceX is designing every component from the satellites to earth gateways and customer receivers. For any of you that want to crawl through specifications, the FCC filing is intriguing.

The large number of satellites would provide broadband capability to a large number of customers, while also blanketing the globe and bringing broadband to many places that don’t have it today. The specifications say that each satellite will have an aggregate capacity of between 17 and 23 Gbps, meaning each satellite could theoretically process that much data at the same time.

The specifications say that the network could produce gigabit links to customers, although that would require making simultaneous connections from several satellites to one single customer. And while each satellite has a lot of capacity, using them to provide gigabit links would chew up the available bandwidth in a hurry and would mean serving far fewer customers. It’s more likely that the network will be used to provide speeds such as 50 Mbps to 100 Mbps.

But those speeds could be revolutionary for rural America. The FCC and their CAF II program is currently spending $9 billion to bring faster DSL or cellular service to rural America with speeds that must be at least 10/1 Mbps. Musk says this whole venture will cost about $10 billion and could bring faster Internet not only to the US, but to the world.

It’s an intriguing idea, and if it was offered by anybody else other than Elon Musk it might sound more like a pipedream than a serious idea. But Musk has shown the ability to launch cutting-edge ventures before. There is always a ways to go between concept and reality and like any new technology there will be bugs in the first version of the technology. But assuming that Musk can raise the money, and assuming that the technology really works as promised, this could change broadband around the world.

This technology would likely be the death knell of slower rural broadband technologies like LTE cellular, DSL, or poorly-deployed point-to-multipoint wireless systems. In today’s world the satellites would even compete well with current landline data products in more urban areas. But over a decade or two the ever-increasing speeds that customers will want will ultimately still be better served by landline connections. Yet for the near future this technology could be disruptive to numerous landline broadband providers.

It’s hard to envision the implications from providing fast broadband around the globe. For example, this would provide a connection to the web that is not filtered by a local government. It would also bring real broadband to any rural place that has available power. In the poorer nations of the world this would be transformational.  It’s hard to over-state the potential impacts that this technology could have around our planet if it’s deployed successfully.

Musk says he would like to launch his first satellite in 2019, so I guess we won’t have to wait too long to see if this can work.  I’ll be watching.

 

5 thoughts on “Can Satellites Solve the Rural Broadband Problem?

  1. Pingback: OTR Links 12/08/2016 | doug --- off the record

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s