5G and Rural America

FCC Chairman Ajit Pai recently told the crowd at CES that 5G would be a huge benefit to rural America and would help to close the rural broadband divide. I have to imagine he’s saying this to keep rural legislators on board to support that FCC’s emphasis on promoting 5G. I’ve thought hard about the topic and I have a hard time seeing how 5G will make much difference in rural America – particularly with broadband.

There is more than one use of 5G, and I’ve thought through each one of them. Let me start with 5G cellular service. The major benefits of 5G cellular are that a cell site will be able to handle up to 100,000 simultaneous connection per cell site. 5G also promises slightly faster cellular data speeds. The specification calls for speeds up to 100 Mbps with the normal cellular frequencies – which happens to also have been the specification for 4G, although it was never realized.

I can’t picture a scenario where a rural cell site might need 100,000 simultaneous connections within a circle of a few miles. There aren’t many urban places that need that many connections today other than stadiums and other crowded locations where a lot of people want connectivity at the same time. I’ve heard farm sensors mentioned as a reason for needing 5G, but I don’t buy it. The normal crop sensor might dribble out tiny amounts of data a few times per day. These sensors cost close to $1,000 today, but even if they somehow get reduced to a cost of pennies it’s hard to imagine a situation where any given rural cell site is going to need to more capacity than is available with 4G.

It’s great if rural cell sites get upgraded, but there can’t be many rural cell sites that are overloaded enough to demand 5G. There is also the economics. It’s hard to imagine the cellular carriers being willing to invest in a rural cell site that might support only a few farmers – and it’s hard to think the farmers are willing to pay enough to justify their own cell site

There has also been talk of lower frequencies benefitting rural America, and there is some validity to that. For example, T-Mobile’s 600 MHz frequency travels farther and penetrates obstacles better than higher frequencies. Using this frequency might extend good cellular data coverage as much as an extra mile and might support voice for several additional miles from a cell site. However, low frequencies don’t require 5G to operate. There is nothing stopping these carriers from introducing low frequencies with 4G (and in fact, that’s what they have done in the first-generation cellphones capable of using the lower frequencies). The cellular carriers are loudly claiming that their introduction of new frequencies is the same thing as 5G – it’s not.

5G can also be used to provide faster data using millimeter wave spectrum. The big carriers are all deploying 5G hot spots with millimeter wave technology in dense urban centers. This technology broadcasts super-fast broadband for up to 1,000 feet.  The spectrum is also super-squirrely in that it doesn’t pass through anything, even a pane of glass. Try as I might, I can’t find a profitable application for this technology in suburbs, let alone rural places. If a farmer wants fast broadband in the barnyard I suspect we’re only a few years away from people being able to buy a 5G/WiFi 6 hot spot that could satisfy this purpose without paying a monthly fee to a cellular company.

Finally, 5G can be used to provide gigabit wireless loops from a fiber network. This is the technology trialed by Verizon in a few cities like Sacramento. In that trial, speeds were about 300 Mbps, but there are no reason speeds can’t climb to a gigabit. For this technology to work there has to be a transmitter on fiber within 1,000 feet of a customer. It seems unlikely to me that somebody spending the money to get fiber close to farms would use electronics for the last few hundred feet instead of a fiber drop. The electronics are always going to have problems and require truck rolls, and the electronics will likely have to be replaced at least once per decade. The small telcos and electric coops I know would scoff at the idea of adding another set of electronics into a rural fiber network.

I expect some of the 5G benefits to find uses in larger county seats – but those towns have the same characteristics as suburbia. It’s hard to think that rural America outside of county seats will ever need 5G.

I’m at a total loss of why Chairman Pai and many politicians keep extolling the virtues of rural 5G. I have no doubt that rural cell sites will be updated to 5G over time, but the carriers will be in no hurry to do so. It’s hard to find situations in rural America that demand a 5G solution that can’t be done with 4G – and it’s even harder to justify the cost of 5G upgrades that benefit only a few customers. I can’t find a business case, or even an engineering case for pushing 5G into rural America. I most definitely can’t foresee a 5G application that will solve the rural broadband divide.

 

The Upcoming 5G Confusion

Until now the 5G industry has spread a lot of hype, but it hasn’t affected customers. That’s all starting to change as the cellular carriers are starting to offer 5G phones. Many customers who spend extra for 5G phones are going to quickly be frustrated and disappointed as they try to participate in the new 5G world.

Consider both AT&T and T-Mobile. Both companies are introducing both a low-band and a high-band 5G phone and customers who want 5G will have to choose one of the two options because the carriers don’t offer a phone that handles both new sets of spectrum.

In AT&T’s case, the low-band phone will introduce 850 MHz spectrum while the high-band phone will use millimeter wave spectrum. The T-Mobile low-band phone will use 600 MHz spectrum with the high-band phone will use millimeter wave spectrum.

Customers buying any of these phones are likely to be disappointed. The high-band phones only work outdoors and when a customer is within range of a handful of millimeter wave hotspots, which are mostly in downtown areas of major cities. Unless somebody has a job that keeps them outside within a small downtown urban footprint, the new high-band phones will default to 4G LTE. Even where a customer is within range of the millimeter wave spectrum it’s been reported that the signal gets easily blocked when a customer turns a corner around a building or even sometimes when the customer’s body blocks the path to the cell site.

Customers of the low-band phones are also likely to be disappointed. The two new low-band spectrums being used are great at penetrating buildings, and so data coverage might improve indoors. However, low-band spectrum, by definition, doesn’t carry a lot of bandwidth. A customer with a low-band 5G phone will likely get data speeds similar to 4G LTE. That is predicated upon living or working close to cell sites that have been upgraded to the new low-band spectrum – because many cell sites won’t yet carry the new spectrum.

There might be a short period of time where a customer with a low-band phone sees better performance – but that will be because they will be one of the few users of the new spectrum. As the more people use the new spectrum bands, the performance will look like that in similar bands of spectrum. I remember how early customers with 4G LTE praised the fast speeds, but those fast speeds fell back to normal within a short period of time.

The real bang with low-band spectrum will come in a few years after the cellular carriers perfect and integrate dynamic spectrum sharing into the 5G architecture. This is one of the new 5G features that let the cellular carriers combine multiple frequencies into a single data path to a customer. Today, a customer with one of the low-band phones will either be using the new low-band spectrum or traditional 4G LTE spectrum – but not both at the same time. The other benefit of the lower spectrum bands is that the spectrum will travel farther from a cell site, albeit at slower speeds.

The new phones will be confusing to customers for another reason – customers won’t be able to use these new phones to change carriers. A phone that can receive AT&T’s 850 MHz spectrum is not going to receive T-Mobile’s 600 MHz spectrum. A customer changing carriers with one of the new phones is going to only get traditional 4G LTE at a different carrier. This is going to become the new norm for the next decade as the carriers start using drastically different bands of spectrum.

Unfortunately, the cellular companies aren’t being straight with customers and are touting these new phones as high-performance 5G. The phones are not yet 5G since they don’t incorporate the best new features of the 5G standards – instead, they are 4G LTE phones that are adding new choices of spectrum. Perhaps the new phones can be labeled as 4.1 G, but I think even that would be generous.

The other big problem with the first generation of phones is that they will be obsolete once the carriers start adding the new 5G functions. 5G has a lot of great features coming including dynamic spectrum sharing (combines multiple frequencies), frequency slicing (gives each customer a data connection to match what they are trying to do), and the ability to connect to more than one cellular tower. This is going to be a problem between now and the time that 5G is mature – any 5G phone already in use won’t be able to handle any new feature as it’s introduced. Every 5G phone sold for the next decade will almost instantly be obsolete in terms of not being able to use new features.

I’m not sure why anybody would shell out extra to buy a 5G phones today. There might be a few people that have a specific reason to use the new spectrum and who happen to live in the right place to be able to use it. However, the vast majority of people are going to be disappointed since they are likely to have paid extra for a phone that’s still going to be 4G LTE. I know people like bragging rights by having the latest tech toy – but somebody buying a 5G phone is more of a sucker than an innovator. They will have bought into the carriers’ 5G hype – hook, line, and sinker.