5G and Rural America

FCC Chairman Ajit Pai recently told the crowd at CES that 5G would be a huge benefit to rural America and would help to close the rural broadband divide. I have to imagine he’s saying this to keep rural legislators on board to support that FCC’s emphasis on promoting 5G. I’ve thought hard about the topic and I have a hard time seeing how 5G will make much difference in rural America – particularly with broadband.

There is more than one use of 5G, and I’ve thought through each one of them. Let me start with 5G cellular service. The major benefits of 5G cellular are that a cell site will be able to handle up to 100,000 simultaneous connection per cell site. 5G also promises slightly faster cellular data speeds. The specification calls for speeds up to 100 Mbps with the normal cellular frequencies – which happens to also have been the specification for 4G, although it was never realized.

I can’t picture a scenario where a rural cell site might need 100,000 simultaneous connections within a circle of a few miles. There aren’t many urban places that need that many connections today other than stadiums and other crowded locations where a lot of people want connectivity at the same time. I’ve heard farm sensors mentioned as a reason for needing 5G, but I don’t buy it. The normal crop sensor might dribble out tiny amounts of data a few times per day. These sensors cost close to $1,000 today, but even if they somehow get reduced to a cost of pennies it’s hard to imagine a situation where any given rural cell site is going to need to more capacity than is available with 4G.

It’s great if rural cell sites get upgraded, but there can’t be many rural cell sites that are overloaded enough to demand 5G. There is also the economics. It’s hard to imagine the cellular carriers being willing to invest in a rural cell site that might support only a few farmers – and it’s hard to think the farmers are willing to pay enough to justify their own cell site

There has also been talk of lower frequencies benefitting rural America, and there is some validity to that. For example, T-Mobile’s 600 MHz frequency travels farther and penetrates obstacles better than higher frequencies. Using this frequency might extend good cellular data coverage as much as an extra mile and might support voice for several additional miles from a cell site. However, low frequencies don’t require 5G to operate. There is nothing stopping these carriers from introducing low frequencies with 4G (and in fact, that’s what they have done in the first-generation cellphones capable of using the lower frequencies). The cellular carriers are loudly claiming that their introduction of new frequencies is the same thing as 5G – it’s not.

5G can also be used to provide faster data using millimeter wave spectrum. The big carriers are all deploying 5G hot spots with millimeter wave technology in dense urban centers. This technology broadcasts super-fast broadband for up to 1,000 feet.  The spectrum is also super-squirrely in that it doesn’t pass through anything, even a pane of glass. Try as I might, I can’t find a profitable application for this technology in suburbs, let alone rural places. If a farmer wants fast broadband in the barnyard I suspect we’re only a few years away from people being able to buy a 5G/WiFi 6 hot spot that could satisfy this purpose without paying a monthly fee to a cellular company.

Finally, 5G can be used to provide gigabit wireless loops from a fiber network. This is the technology trialed by Verizon in a few cities like Sacramento. In that trial, speeds were about 300 Mbps, but there are no reason speeds can’t climb to a gigabit. For this technology to work there has to be a transmitter on fiber within 1,000 feet of a customer. It seems unlikely to me that somebody spending the money to get fiber close to farms would use electronics for the last few hundred feet instead of a fiber drop. The electronics are always going to have problems and require truck rolls, and the electronics will likely have to be replaced at least once per decade. The small telcos and electric coops I know would scoff at the idea of adding another set of electronics into a rural fiber network.

I expect some of the 5G benefits to find uses in larger county seats – but those towns have the same characteristics as suburbia. It’s hard to think that rural America outside of county seats will ever need 5G.

I’m at a total loss of why Chairman Pai and many politicians keep extolling the virtues of rural 5G. I have no doubt that rural cell sites will be updated to 5G over time, but the carriers will be in no hurry to do so. It’s hard to find situations in rural America that demand a 5G solution that can’t be done with 4G – and it’s even harder to justify the cost of 5G upgrades that benefit only a few customers. I can’t find a business case, or even an engineering case for pushing 5G into rural America. I most definitely can’t foresee a 5G application that will solve the rural broadband divide.

 

Disasters and Regulation

Both Ajit Pai, the Chairman of the FCC and Governor Rick Scott of Florida have expressed frustration over the speed of recovery of communication in the Florida Panhandle following hurricane Michael. I don’t think anybody expects communications to be restored quickly in the neighborhood by the shore where even the houses are gone, and the frustration is more with lack of communications in areas that were damaged, but not totally devastated.

There are a number of issues to be considered when looking at the slow recovery – regulation, technology and the profitability of the telecom carriers.

The regulatory issues are pretty clear. Back when AT&T or some smaller independent telephone company would have served this area we would have seen the same sort of response from the telephone companies as we see today from the power companies. AT&T and other telcos from around the country would have mobilized swarms of technicians to replace fallen wires. The electronics vendors would have gone to extraordinary lengths to shuffle and direct all of their resources to the disaster areas.

We had plenty of hurricanes during the time when we had telephone monopolies and the telephone linemen were out working as furiously as the power companies to restore service. I remember from the time when I worked at Southwestern Bell that the company had disaster plans in place and routinely reviewed the plans with employees who might be activated during emergencies – the company made disaster a recovery an everyday part of operating the monopoly business.

But the days of monopoly are long past. The phone company is now far from a monopoly and probably only serves a small percentage of the customers in any given area. The big telcos have had huge layoffs over the years and don’t have the staffs that can swarm the area. I wouldn’t be surprised if they don’t even have disaster plans.

Cable companies are the closest thing we have to monopolies and I expect them to put wires back in a reasonable time after a bad storm – but there are many parts of the hurricane-struck area that aren’t served by a cable company. A cable company is still not likely to get the same swarm of technicians like we saw in the regulated telco days.

As we saw with hurricane Sandy, the telcos no longer rushes to fix the damage. After that storm Verizon decided that they weren’t going to fix the copper and used the storm as an opportunity to switch customers to all-wireless cellular broadband. That’s not a change that can be implemented quickly and we saw some of the areas after Sandy without telecom for months. I expect AT&T is going through the same thought process for much of the area from hurricane Michael and is not going to put back copper wires.

There are also technical issues to consider. I’m willing to bet that the primary cause of frustration is the slow recovery of the cellular towers. Unlike the telephone network there is little redundancy built into the cellular networks. When the towers, antennae and equipment huts around a tower are damaged there is no quick fix, and replacements need to be shipped in. Unlike the major coordinated disaster plans of the old Ma Bell, I doubt that the cellular carriers have react-immediately disaster recovery plans. That kind of planning costs money. The companies would need to hold dozens of cell sites in place as spares that were ready to be shipped out on a moment’s notice. That’s not profitable and there is no regulatory agency insisting that the cellular companies have such plans in place.

As the technology at the edge increases, the time needed for recover from a disaster increases. I remember that this was a concern for telcos when they first placed DSL cabinets in neighborhoods – they knew it would take a lot longer to recover from destroyed electronics compared to the days when the outside network was most just copper wires. The cellular networks are the same, and we are about to enter a time when 5G and other new technologies will place electronics deep into neighborhoods. As slow as the recovery might be for hurricane Michael, it’s going to be worse when we are relying on dispersed 5G electronics deep in the field – it takes longer to fix the electronics and the backhaul networks than it is to put wires back on poles.

The issue that nobody wants to talk about is that all of the big companies in the telecom market are now publicly traded companies that exist to maximize quarterly earnings. Having disaster plans in place costs money – and the big companies these days don’t spend anything extra that’s not mandatory. Call it lack of regulation or call it an emphasis on the profit motive, but the big ISPs and cellular companies have no motivation or incentive to make extraordinary efforts after a disaster. I doubt that the existing regulatory powers even give the FCC any authority to impose such rules – particular with broadband, since the FCC says they are no longer regulating it.