Protesting 5G

There were over 90 protests nationwide recently against the coming 5G technology, mostly related to health concerns. The protesters have some of the facts wrong about 5G and that makes it easier for policymakers to ignore them. It’s hard to fault anybody about getting the facts wrong about 5G since the carriers have purposefully filled the press with misleading 5G rhetoric. I would venture to say a lot of people in our industry have the same misunderstandings.

I watched a few news reports of the various protests, and protesters cited the following concerns about 5G. They say that it’s already being installed and will be active in most cities by next year. They say that in the near future that cellular speeds will be 100 times faster than today. They say that the FCC has blessed 5G as safe when it’s not. Let me address each of these issues:

What is 5G? Many of the protestors don’t realize that 5G is the marketing name of several different technologies. 5G can mean improved cellular service. 5G can mean high-speed wireless broadband loops like is being tested by Verizon in Sacramento. And 5G can mean gigabit radio connections made between two points, similar to traditional microwave backhaul. Protestors have conflated the claims for each technology and assume they apply to 5G cellular service.

Is 5G Being Installed Today? Cities everywhere are seeing permit requests for small cell sites and often believe these are requests to install 5G – I just talked to a fairly large city the other day who made this assumption. For now, the requests for small cell sites are to bolster the 4G cellular network. The cellular companies aren’t talking about it, but their 4G data networks are in trouble. People are using so much data on their phones that cell sites are getting overwhelmed. The amount of data being used by cellphones users is currently doubling every two years – and no data network can handle that kind of growth for very long. The cellular carriers are quietly beefing up the 4G networks in order to avoid the embarrassment of major network crashes in a few years. They are hoping that within 3 -5 years that 5G can relieve some of the pressure from cellular networks.

Will 5G Be Here Next Year? It might be a decade until we see a full 5G cellular installation. There are 13 major specifications for improvements between 4G and 5G and those will get implemented over the next decade. This won’t stop the marketing departments of the cellular carriers to loudly claim 5G networks after one or two of these improvements have been partially implemented.  What the cellular companies never bothered to tell the public is that the first fully-compliant 4G cell site was just implemented last year – 5G is going to require the same slow steady introduction of changes until full 5G gets here. Starting a year or two from now we might see some 5G improvements, with more 5G upgrades introduced each year thereafter. The carriers will loudly announce every time they make a 5G trial and will make the world think they are the improvements will be immediately installed everywhere.

Will Cellular Speeds be 100 Times Faster? The 5G specification calls for cellular speeds to be improved over time to 100 Mbps, about 6 times faster than 4G cellular speeds today. Speeds won’t improve overnight and this certainly isn’t going to be here in a year or two.

The public thinks that we’ll see gigabit cellular speeds for several reasons. First, Verizon recently introduced a trial for fast cellular using millimeter wave spectrum in small portions of a few downtown areas. Millimeter wave cellular is not going to make sense for wide deployment because the fast data speeds only carry perhaps 200 feet from the transmitter. Millimeter wave spectrum in this application is blocked by almost everything in the environment. This trial was mostly to grab headlines, not to portend a real product. Confusion also came when AT&T recently announced a 2 Gbps connection made to an outdoor hot spot. This is using point-to-point technology that can never apply to cellphones – but the AT&T announcement made this fuzzy on purpose.

What About the Health Impacts? Most 5G cellular service will use the same spectrum, or some new bands that are similar to today’s cellular spectrum. The primary concern for 5G cellular (and 4G) is the introduction of small cell sites into neighborhoods. It’s concerning to citizens when a cell site is on a pole at their curb instead of at the top of a tall tower outside the neighborhood. The neighborhood cell sites are going to be broadcast at a lower power level than the current big cell sites, so theoretically the amount of cellular radiation ought to be similar to today. But to give credit to the protesters, we’ll only know that’s really true after small cell sites have been installed.

The real health concern that is troublesome is not related to 5G cellular using the same frequencies as today, but rather about the use of  millimeter wave spectrum. A significant percentage of the world’s scientists that work in this area recently warned the United Nations that some past research of millimeter wave spectrum shows negative impacts for plant and animal life. The scientists admit that much more research is needed and they pleaded with the UN to not use the general public as guinea pigs. Belgium recently banned millimeter wave spectrum deployment until the health risks are understood. The FCC joins with almost every other country in allowing the deployment of millimeter wave spectrum and is in the process of licensing more of the spectrum.

As mentioned earlier, Verizon recently did a few trials of sending millimeter wave spectrum to cellphones. This was viewed mostly as a gimmick because this doesn’t seem to have real-life market potential due to the limitations for the spectrum and cellphones. I just saw an estimate that it would take over 300,000 small cell sites to blanket Los Angeles with small cells that are close enough to deploy millimeter wave spectrum – that doesn’t sound like a plausable or profitable business plan.

The technology where the protesters should be focused is millimeter wave spectrum wireless loops. Verizon deployed this to a few hundred homes in Sacramento and a few other cities, delivering about 300 Mbps broadband to homes. Verizon says they have plans to deploy this widely. This is the spectrum use that the scientists warned about. A deployment of millimeter wave loops means constantly bombarding residential neighborhoods with millimeter wave spectrum from poles on the curb. The other planned use of millimeter wave spectrum is for indoor routers that will transmit gigabit bandwidth inside of a room. People can clearly decide to not use millimeter wave routers, but have no say about a carrier introducing it into the neighborhood. Protesters have a valid concern for this technology.

Is There a Business Case for 5G Cellular?

Readers might think I spent too much time writing about 5G. However, I’m asked about 5G almost every day. Existing ISPs want to know if 5G is a real threat. Potential ISPs want to know if they should pause their business plans until they understand 5G’s impact. Cities want to know what to expect. The cellular companies have made such a huge deal about 5G that they’ve spooked the rest of the industry.

Today I ask perhaps the most fundamental question of all – is there a business case for 5G cellular? I’m not talking about 5G wireless loops to homes – I’m just asking if there is a financial justification for the cellular companies to upgrade their cell sites to 5G?

Before answering that question, it’s good to remember that the cellular companies badly need to implement 5G because their 4G networks are facing a crisis. After years of training customers to be stingy in using cellphone data, they are now encouraging users to stream video. The result of this shift is that total cellular data usage is now doubling every two years. Any network engineer will tell that that is deadly growth, particular for a cellular network. The existing 4G network can’t handle this growth for more than a few more years. While some of this growth can be temporarily mitigated by inserting small cell sites into the network, that doesn’t look like it is more than a band-aid fix if broadband keeps growing at this fast pace. Small cell sites will be overwhelmed almost as quickly as they are built.

The carriers need 5G because it will expand the capacity of each cell site by allowing many more customers to use a cell site simultaneously. By taking advantage of frequency slicing and the ability to mix and match multiple frequencies a 5G cell site will be a huge step-up in efficiency. The cellular carriers have not publicly admitted that they need 5G just to keep their networks running – but they really don’t have a choice.

The question, though, is if there is a new revenue stream to help pay for the 5G upgrades? To be honest, I can’t find any early 5G cellular application that will generate much revenue in the near future. The obvious new revenue source would be to charge a premium price to use 5G data on a cellphone. There might be some people willing to pay extra in the early stages of the 5G roll-out, but as 4G morphs over time into 5G, any willingness to pay more for data will melt away.

I also wonder if customers will really value faster cellular data speeds. First, we aren’t talking about a ton of extra speed. Forget the recent trials of millimeter wave 5G – that’s a gimmick for now that will not be available anywhere other than in dense urban centers. The 5G specification that matters to the real world is the goal for 5G speeds to increase over a decade to 100 Mbps.

Good 4G data speeds today are in the range of 15 Mbps and that is more than enough speed to stream data while performing any functions we want from a cellphone. Faster speeds will not stream video any faster. Over time perhaps our cellphones will be able to create augmented reality universes, but that technology won’t be here for a while. Faster data speeds are vitally important in a home where we run multiple large data streams simultaneously – but a cellphone is, by definition, one device for one user.

The real advantage of 5G is the ability to make large numbers of connections from a single cell site. It’s also hard to see an immediate path to monetize that. I talk to a friend many mornings as he commutes and he always gets disconnected at the Eisenhower bridge on the DC beltway – there are not enough cellular connections there to allow for handoffs between Maryland and Virginia. 5G will finally fix that problem, but I can’t see anybody paying extra to not be cut off on the bridge – they will finally be getting what they’ve always expected.

Eventually 5G will have big potential as the connection for outdoor sensors, IoT devices, smart cars, smart streetlights, etc. There is also likely to eventually be a huge market for wearables that might include fitness monitors, medical monitors, smart glasses, and even smart clothes. However, all of these applications will take time to come to market – there is a bit of chicken and egg in that these technologies will likely never take off until there is universal 5G coverage. There is very little revenue likely in the next few years for outdoor applications – although this might eventually be the primary new source of 5G revenue.

I look back to last fall when Ronan Dunne, an EVP of Verizon Wireless, made his case to investors for the potential for 5G. He included the outdoor sensors I mention above. He also cited applications like retail, where holograms might spring up near merchandise in stores. He talked about stock trading that takes advantage of the low latency on 5G. He mentioned gaming, which would benefit from lower latency. Most of these applications offer eventual potential for 5G. But none of these applications are going to produce giant revenues over the next three or four years. In the short run it’s hard to imagine almost any immediate revenue from these applications.

Predicting technology is always a crap shoot and perhaps new applications will arise that need 5G that even Verizon hasn’t imagined. The list of applications that Verizon gave to investors is underwhelming and reflects the fact that there is likely no 5G application that will significantly add to the bottom line of the cellular carriers in the immediate future.

This really brings home the idea that as a nation we are not in a worldwide 5G competition. The carriers need 5G soon to stop the collapse of the 4G data networks in busy neighborhoods. I have a hard time thinking they need it immediately for anything else – although eventually we will be surrounded by 5G applications.

5G Claims for Rural America

There are a few hot-button topics that are the current favorite talking points at the FCC. T-Mobile and Sprint are pressing both the 5G and the rural broadband buttons with their merger request. The companies are claiming that if they are allowed to merge that they can cover 96% of America with a ‘deep, broad, and nationwide’ 5G network.

There are multiple technologies being referred to as 5G – wireless broadband loops and 5G cellular – and their claim doesn’t hold water for either application. In making the claim the companies want regulators to think that they are talking about wireless 5G loop like the technology that Verizon recently test-drove in Sacramento. That technology is delivering 300 Mbps broadband to those living close to the transmitters located on poles. The carriers are smart and know this is the kind of claim that will perk up the ears of regulators and politicians. A ubiquitous 300 Mbps rural broadband product would solve the rural digital divide.

T-Mobile and Sprint are not talking about 5G wireless loops. That technology requires two things to have any chance of success – sufficient neighborhood housing density and fiber backhaul. Rural areas with poor broadband generally lack fiber infrastructure built close to neighborhoods, so a 5G provider would have to build the needed fiber. I can’t imagine why anybody that builds fiber close to a neighborhood would then choose a squirrely wireless link that delivers less than a gigabit of speed instead of a direct fiber connection that can deliver 10 Gbps using today’s readily-available technology.

The other missing element in rural America is customer density. I read an article that says that each Verizon 5G wireless loop transmitter in Sacramento can see at least 20 potential customers. There are a number of industry analysts who think that even that is a hard business case to justify, so how can wireless loops ever work in rural American where a given transmitter will likely see only a few homes? I can foresee the 5G loop technology perhaps being used to deliver broadband to small rural subdivisions or small towns where the wireless link might be cheaper than stringing fiber. However, most of rural America is characterized by low density and homes that are far apart.

What T-Mobile and Sprint are really talking about is 5G rural cellular service. Sprint brings a unique asset to the merger – they are the only US cellular carrier using nationwide spectrum in the 850 MHz and the 2.5 GHz bands. T-Mobile is the only carrier currently using 600 MHz spectrum. The combined companies would have by far the biggest inventory of spectrum – giving them a big advantage in urban America.

But is there an advantage this spectrum can bring to rural broadband? The short answer is no. I say that because I don’t see 5G cellular being that important in rural America? There are several reasons why the T-Mobile and Sprint announcement makes little sense.

The biggest issue is that there is not going to be fully-functional 5G cell sites anywhere in the country for years. It’s likely to take most of the coming decade until we see cell sites that comply with all 13 of the major improvement goals listed in the 5G specifications. There will be a natural progression from 4G to 5G as the carriers implement upgrades over time – the same upgrade path we just saw with 4G, where the first fully-compliant 4G cell sites were finally implemented in late 2017.

The bigger question is if most rural cell sites need 5G. The new technology brings several major improvements to cellular. First will be the ability of one cell site to make up to 100,000 simultaneous connections to devices, up from several thousand connections today. This improvement will be mostly accomplished using frequency slicing. This allows a cell site to tailor the size of the broadband connection to each customer’s demand. For example, a connection to an IoT device might be set at a tiny fraction of a full cellular channel, thus freeing up the rest of that channel to serve other customers. Many rural cell sites won’t need this extra capacity. A rural cell site that serves a few hundred people at a time will continue to function well with 4G and won’t need the extra capacity.

5G also can be used to increase the speed of cellular broadband, with the goal in the standard to bring speeds to as fast as 100 Mbps. That is also unlikely to happen to any great degree in rural America. Speeds of 100 Mbps will be accomplished in urban areas by having multiple cell sites connect to a single cellphone. That will require densely packed small cell sites, which is something we are already starting to see in the busy parts of downtowns. It’s incredibly unlikely that the cellular companies are going to introduce small cell sites through rural America just to boost handset broadband speeds. Speeds are not likely to be much faster than 4G when a customer can see only a single tower.

The T-Mobile and Sprint claim is pure bosh. These companies are not going to be investing in fiber to bring 5G wireless loops to rural America. While a combined company will have more spectrum than the other carriers there is no immediate advantage for using 5G for rural cellular coverage . The T-Mobile and Sprint announcements are just pushing the 5G and the rural broadband hot-buttons because the topics resonate well with politicians who don’t understand the technology.