The Battle for IoT

There is an interesting battle going on to be the technology that monetizes the control of Internet of Things devices. Like a lot of tech hype, IoT has developed a lot slower than originally predicted – but it’s now finally becoming a big business. I think back to a decade ago when tech prognosticators said we’d soon be living in a virtual cloud of small monitors that would monitor everything in our life. According to those early predictions, our farm fields should already be fully automated, and we should all be living in the smart home envisioned by the Jetsons. Those predictions probably say more about the tech press that hypes new technologies than about IoT.

I’ve been noticing increasing press releases and articles talking about different approaches to monetizing IoT traffic. The one that we’ve all heard the most about is 5G. The cellular companies told Wall Street five years ago that the monitoring of IoT devices was going to fuel the 5G business plan. The wireless companies envisioned households all buying a second cellular subscription to monitor devices.

Except in a few minor examples, this business plan never materialized. I was reminded of it this week when I saw AT&T partnering with Smart Meter to provide patient monitoring for chronic conditions like diabetes and high blood pressure. The monitoring devices worn by patients include a SIM card, and patients can be monitored anywhere within range of a cellular signal. It’s a great way for AT&T to monetize IoT subscriptions – in this case, with monthly fees likely covered by health insurance. It sounds like an awesome product.

Another player in the IoT world is LEO satellites. In August of last year, Starlink made a rare acquisition by buying Swarm. This company envisions using satellites to be able to monitor outdoor IOT devices anywhere in the world. The Swarm satellites are less than a pound each, and the Swarm website says the goal is to have three of these small satellites in range of every point on earth by the end of 2022. That timeline slowed due to the purchase by Starlink, but this could be a huge additional revenue stream for the company. Swarm envisions putting small receivers in places like fields. Like with Starlink, customers must buy the receivers, and there is an IoT data monitoring plan that will allow the collection of 750 data packets per month for a price of $60 per year.

Also still active in pursuing the market are a number of companies promoting LoRaWAN technology. This technology uses tall towers or blimps and CBRS or some other low-power spectrum to communicate with IoT monitors over a large geographic area. The companies developing this technology can be found at the LoRa Alliance.

Of course, the current king of IoT is WiFi. Charter recently said it is connected to 5 billion devices on its WiFi network. WiFi has the advantage of a free IoT connection for the price of buying a broadband connection.

Each of these technologies has a natural market niche. The AT&T health monitoring system only makes sense on a cellular network since patients need to be monitored everywhere they go during the day. Cellular should be the go-to technology for mobile monitoring. The battle between LoRaWAN and satellites will be interesting and will likely eventually come down to price. Both technologies can be used to reach farm fields where cellular coverage is likely to never be ubiquitous. WiFi is likely to carry the signals from the devices in our homes – the AT&T vision of everybody buying an IoT cellular data plan sounds extremely unlikely since we all can have the same thing for the cost of a WiFi router.

New Technology – June 2016

The InternetThere is a lot of recent news of technological breakthroughs that ought to have some an on telecom and broadband.

Faster Microwave Radios. A collaboration of researchers working for ACCESS (Advanced E Band Satellite Link Studies) in Germany has created a long-range microwave link at 6 Gbps speeds. The technology uses the very high E band frequencies at 71 – 76 GHz and in testing were able to create a data path between radios that were 23 miles apart. It’s the very short length of the radio waves at this frequency that allow for the very fast data rates.

The radios rely on transistor technology from Fraunhofer IAF, a firm that has been involved in several recent high-bandwidth radio technologies. The transmitting radio broadcasts at a high-power of 1 watt while the receivers are designed to detect and reconstruct very weak signals.

When perfected this could provide a lower cost way to provide bandwidth links to remote locations like towns situated in rough terrain or cellular and other radio towers located on mountaintops. This is a significant speed breakthrough for point-to-point microwaves at almost six times the speed of other existing microwave technologies.

Smarter Chip Processing. A team at MIT’s Computer Science and Artificial Intelligence Laboratory have developed a programming technique to make much better use of denser computer chips. In theory, a 64-core chip ought to be nearly 64 times faster than one with a single core, but in practice that has not been the case. Since most computer programs run sequentially (instructions and decision trees are examined one at a time, in order) most programs do not run much faster on denser chips.

The team created a new chip design they call Swarm that will speed up parallel processing and that will also make it easier to write the code for denser chips. In early tests, programs run on the swarm chip have been 3 to 18 times faster while also requiring as little as 10% of the code needed for normal processing.

1,000 Processor Chip. And speaking of denser chips, scientists at the University of California at Davis Department of Electrical and Computer Engineering have developed the first chip that contains over 1,000 separate processors. The chip has a maximum computation rate of 1.78 trillion instructions per second.

They are calling it the KiloCore chip and it’s both energy efficient and the highest clock rate chip ever developed. The chip uses IBM’s 32 nanometer technology. Each chip can run separate programming or they can be used in parallel. The scientists envision using a programming technique called the single-instruction-multiple-data approach that can break applications down into small discrete steps so that they can be processed simultaneously.

Faster Graphene Chips. Finally, US-Army funded researchers at MIT’s Institute for Soldier Nanotechnologies have developed a technology that could theoretically make chips as much as 1 million times faster than today. The new technology uses graphene and relies on the phenomenon that graphene can be used to slow light below the speed of electrons. This slowed-down light emits ‘plasmons’ of intense light that create what the scientists called an optic boom (similar to a sonic boom in air).

These plasmons could be used to greatly speed up the transmission speeds within computer chips. They have found that the optic booms can push data through graphene at about 1/300th the speed of light, a big improvement over photons through silicon.

The researchers have been able to create and control the plasmon bursts and are hoping to have a working graphene chip using the technology within two or three years.