The Battle for IoT

There is an interesting battle going on to be the technology that monetizes the control of Internet of Things devices. Like a lot of tech hype, IoT has developed a lot slower than originally predicted – but it’s now finally becoming a big business. I think back to a decade ago when tech prognosticators said we’d soon be living in a virtual cloud of small monitors that would monitor everything in our life. According to those early predictions, our farm fields should already be fully automated, and we should all be living in the smart home envisioned by the Jetsons. Those predictions probably say more about the tech press that hypes new technologies than about IoT.

I’ve been noticing increasing press releases and articles talking about different approaches to monetizing IoT traffic. The one that we’ve all heard the most about is 5G. The cellular companies told Wall Street five years ago that the monitoring of IoT devices was going to fuel the 5G business plan. The wireless companies envisioned households all buying a second cellular subscription to monitor devices.

Except in a few minor examples, this business plan never materialized. I was reminded of it this week when I saw AT&T partnering with Smart Meter to provide patient monitoring for chronic conditions like diabetes and high blood pressure. The monitoring devices worn by patients include a SIM card, and patients can be monitored anywhere within range of a cellular signal. It’s a great way for AT&T to monetize IoT subscriptions – in this case, with monthly fees likely covered by health insurance. It sounds like an awesome product.

Another player in the IoT world is LEO satellites. In August of last year, Starlink made a rare acquisition by buying Swarm. This company envisions using satellites to be able to monitor outdoor IOT devices anywhere in the world. The Swarm satellites are less than a pound each, and the Swarm website says the goal is to have three of these small satellites in range of every point on earth by the end of 2022. That timeline slowed due to the purchase by Starlink, but this could be a huge additional revenue stream for the company. Swarm envisions putting small receivers in places like fields. Like with Starlink, customers must buy the receivers, and there is an IoT data monitoring plan that will allow the collection of 750 data packets per month for a price of $60 per year.

Also still active in pursuing the market are a number of companies promoting LoRaWAN technology. This technology uses tall towers or blimps and CBRS or some other low-power spectrum to communicate with IoT monitors over a large geographic area. The companies developing this technology can be found at the LoRa Alliance.

Of course, the current king of IoT is WiFi. Charter recently said it is connected to 5 billion devices on its WiFi network. WiFi has the advantage of a free IoT connection for the price of buying a broadband connection.

Each of these technologies has a natural market niche. The AT&T health monitoring system only makes sense on a cellular network since patients need to be monitored everywhere they go during the day. Cellular should be the go-to technology for mobile monitoring. The battle between LoRaWAN and satellites will be interesting and will likely eventually come down to price. Both technologies can be used to reach farm fields where cellular coverage is likely to never be ubiquitous. WiFi is likely to carry the signals from the devices in our homes – the AT&T vision of everybody buying an IoT cellular data plan sounds extremely unlikely since we all can have the same thing for the cost of a WiFi router.

What’s the Best Way to Help Precision Agriculture?

The FCC is going to take a fresh look at the $9 billion 5G fund this month and it sounds like the grant program will get delayed again while the FCC figures out where to deploy the money. The fund idea has been roiled in controversy since the beginning when it became clear that the big cellular companies were providing false data about existing cellular coverage.

Buried inside this fund is $1 billion in grants intended to help precision farming. Precision farming needs bandwidth, and apparently, the FCC has decided that the bandwidth should be cellular. I was frankly surprised to see such a specific earmark. The current FCC and administration have clearly climbed on the 5G bandwagon, but it seems premature to me to assume that cellular will be the winning technology for precision agriculture.

This funding means that the cellular companies will get a free, or highly subsidized network and will then be able to bill farmers for providing the bandwidth needed for smart tractors and for the millions of field sensors that the industry predicts will be deployed to monitor crops and livestock.

This all sounds great and shows that the government is working to help solve one of our biggest broadband needs. But it also means that the FCC hopes to hand the agribusiness revenue stream to cellular companies. This feels to me like another victory for the cellular lobbyists – their companies get free government handouts that will lead to lucrative long-term monopoly revenue streams.

If the FCC was doing its job right, we’d be seeing a far different approach. There are multiple wireless technologies that can be leveraged for smart agriculture.

  • Cellular technology is an option, but it’s not necessarily the best technology to cover big swaths of farmland. The coverage area around a cell tower is only a few miles and it requires a huge number of rural cell sites to provide universal cellular broadband coverage in farming areas.
  • Another option is LoRaWAN, a technology that is perfect for providing small bandwidth to huge numbers of sensors over a large area. This technology was discussed in a recent blog talking about the deployment of a LoRaWAN blimp in Indiana.
  • By default, early farm sensors are using WiFi, which is something farms can implement locally, at least in barns and close to farm buildings.

All these technologies require broadband backhaul, and this could be provided by fiber or satellites. If the 5G grants and the current RDOF grants are spent wisely there will be fiber built deeply into farming counties. Satellite broadband could fill in for the most remote farms.

Ideally, the FCC would be considering the above technologies and any others that could help agribusiness. Agriculture is our largest industry and it seems callous to stuff money to solve the problem inside an FCC grant program that might not even be awarded for several years and that then will allow for six more years to build the networks – that would push solutions out for at least a decade into the future.

Instead, the FCC should be establishing a smart farming grant program to see what could be done now for this vital sector of our economy. The FCC should be funding experimental test trials to understand the pros and cons of using cellular, WiFi, satellite, or LoRaWAN bandwidth to talk to farm devices. The results of such trials would then be used to fund a farming broadband grant program that would deploy farm broadband in an expeditious manner – a lot sooner than a decade from now.

The FCC should not be automatically awarding money to cellular companies to control the budding smart farming industry. If we took the time to look at this scientifically, we’d find out which technology is the most suitable and sustainable. For example, one of the driving factors in creating smart farming is going to be the power needs for sensors using the different wireless technologies. It may turn out that the best solution is cellular – but we don’t know that. But that’s not going to stop the FCC from marching forward with $1 billion in grants without ever having looked hard at the issue. This sounds like just another giveaway to the big carriers to me.