The Definition of Broadband

When the FCC set the definition of broadband at 25/3 Mbps in January of 2015, I thought it was a reasonable definition. At the time the FCC said that 25/3 Mbps was the minimum speed that defined broadband, and anything faster than 25/3 Mbps was considered to be broadband, and anything slower wasn’t broadband.

2015 was forever ago in terms of broadband usage and there have been speed increases across the industry since then. All of the big cable companies have unilaterally increased their base broadband speeds to between 100 Mbps and 200 Mbps. Numerous small telcos have upgraded their copper networks to fiber. Even the big telcos have increased speeds in rural America through CAF II upgrades that increased speeds to 10/1 Mbps – and the telcos all say they did much better in some places.

The easiest way to look at the right definition of broadband today is to begin with the 25/3 Mbps level set at the beginning of 2015. If that was a reasonable definition at the beginning of 2015, what’s a reasonable definition today? Both Cisco and Ookla track actual speeds achieved by households and both say that actual broadband speeds have been increasing nationally about 21% annually. Apply a 21% annual growth rate to the 25 Mbps download speeds set in 2015 would predict that the definition of broadband today should be 54 Mbps:

2015 2016 2017 2018 2019
25 30 37 44 54

We also have a lot of anecdotal evidence that households want faster speeds. Households have been regularly bailing on urban DSL and moving to faster cable company broadband. A lot of urban DSL can be delivered at speeds between 25 and 50 Mbps, and many homes are finding that to be inadequate. Unfortunately, the big telcos aren’t going to provide the detail needed to understand this phenomenon, but it’s clearly been happening on a big scale.

It’s a little sketchier to apply this same logic to upload speeds. There was a lot of disagreement about using the 3 Mbps download speed standard established in 2015. It seems to have been set to mollify the cable companies that wanted to assign most of their bandwidth to download. However, since 2015 most of the big cable companies have upgraded to DOCSIS 3.1 and they can now provide significantly faster uploads. My home broadband was upgraded by Charter in 2018 from 60/6 Mbps to 135/20 Mbps. It seems ridiculous to keep upload speed goals low, and if I was magically put onto the FCC, I wouldn’t support an upload speed goal of less than 20 Mbps.

You may recall that the FCC justified the 25/3 Mbps definition of broadband by looking at the various download functions that could be done by a family of four. The FCC examined numerous scenarios that considered uses like video streaming, surfing the web, and gaming. The FCC scenario was naive because they didn’t account for the fact that the vast majority of homes use WiFi. Most people don’t realize that WiFi networks generate a lot of overhead due to collisions of data streams – particularly when a household is trying to do multiple big bandwidth applications at the same time. When I made my judgment about the 25/3 Mbps definition back in 2015, I accounted for WiFi overheads and I still thought that 25/3 Mbps was a reasonable definition for the minimum speed of broadband.

Unfortunately, this FCC is never going to unilaterally increase the definition of broadband, because by doing so they would reclassify millions of homes as not having broadband. The FCC’s broadband maps are dreadful, but even with the bad data, it’s obvious that if the definition of broadband was 50/20 Mbps today that a huge number of homes would fall below that target.

The big problem with the failure to recognize the realities of household broadband demand is that the FCC is using the already-obsolete definition of 25/3 Mbps to make policy decisions. I have a follow-up blog to this one that will argue that using that speed as the definition of the upcoming $20.4 billion RDOF grants will be as big of a disaster as the prior FCC decision to hand out billions to upgrade to 10/1 Mbps DSL in the CAF II program.

The fact that household broadband demand grows over time is not news. We have been on roughly the same demand curve growth since the advent of dial-up. It’s massively frustrating to see politics interfere with what is a straight engineering issue. As homes use more broadband, particularly when they want to do multiple broadband tasks at the same time, their demand for faster broadband grows. I can understand that no administration wants to recognize that things are worse than they want them to be – so they don’t want to set the definition of broadband at the right speed. But it’s disappointing to see when the function of the FCC is supposed to be to make sure that America gets the broadband infrastructure it needs. If the agency was operated by technologists instead of political appointees we wouldn’t even be having this debate.

Some Problems with the RDOF

The FCC recently published a set of proposed rules for conducting the $20.4 billion broadband grant program it has labeled as the Rural Digital Opportunity Zone (RDOF). While the FCC is to be applauded for redirecting the funding that formerly was used to support the CAF II program, there are still some problems I foresee in the grant program as proposed.

Reverse Auction. Many of my problems come because of the use of a reverse auction. I understand why politicians and policymakers like this idea. The general concept that those willing to take the least amount of subsidy get the funding somehow sounds fair, but a reverse auction is not going to result in the best use of these funds to bring permanent broadband solutions to rural America:

  • Favors Those Who Don’t Need the Money. We saw this in the CAF II reverse auction where satellite broadband won a significant amount of funding. This time around there’s a good chance that a large amount of grant money might go to Elon Musk’s Starlink and the other low orbit satellite providers. By definition, for satellite technology to work they have to cover everywhere – and so they are going to be launching the satellites anyway without subsidy. These companies can easily be the low bidders because getting anything out of the grant fund is still a great result for them. As we going to be happy of the result of the reverse auction results in billions of dollars handed to Elon Musk?
  • Favors Lowest Cost Technology. By definition, those planning to spend less per customer to bring broadband can take accept money from the grants and still be happy. This means the grants will favor solutions the big telcos again tweaking DSL over ancient copper if they choose to participate. This would allow AT&T and Verizon to grab a lot of money to support rural cellular upgrades. While the FCC is planning to weight the bidding to promote faster technologies like fiber, if the weighting isn’t done right, then the funding will automatically favor lower-cost yet slower technologies. Maybe that’s what the FCC wants – to bring some broadband solution to the largest number of people – but the best policy is to bring a permanent broadband solution to a smaller subset of areas.
  • Discriminates Against High Cost Areas. The areas that need broadband the most are where it costs the most to build any infrastructure. Areas like Appalachia and Alaska are high cost because of topology, and anybody applying for grants in these areas likely can’t afford to reduce the percentage of grant funding their receive. The entire concept of reverse auction, by definition, favors parts of the country with the lowest construction costs. Applicants in the wide-open plains of the Midwest have a built-in advantage.

The Sheer Size of the One-Time Award. The grant awards are likely to be about a year away. I wonder if there will be enough ISPs ready to bid in that short time frame? Bidders need to develop an engineering estimate and business plan of sufficient quality to also attract financing. If there are not enough ISPs able to be ready for the auction in that time frame, even more of the money is likely to flow to big companies like the satellite providers who would be glad to take the whole pot of funding. A better plan would have been to break this into several grant years and award some 10-year grants, some 9-year grants, and some 8-year grants.

No Real Penalties for Cheating. Companies don’t get penalized much for lying about the speeds they can deliver. We saw a few wireless providers in the CAF II reverse auction claim they can deliver 100 Mbps broadband to everybody. Unless somebody develops that technology in the next 2-3 years they are going to deliver something less, at least to a large percentage of their coverage area. If a company gets a bidding credit by making a false claim, they should lose all of their funding and have to repay the FCC. The proposed penalties are not much more than a slap on the wrist and encourage companies to claim faster speeds than they can deliver.

Likely Excludes Some Bidders. The rules still seem to exclude entities that can’t get Eligible Telecommunications Carrier (ETC) status – a regulatory designation required to get money from the Universal Service Fund – a status only available to entities that own the network, and which are also the retail ISP. This would preclude entities like the PUDs, the rural municipal electric companies in Washington that are required by law to operate open access networks. It also could preclude certain kinds of partnerships where the retail ISP is different than the network owner – an arrangement we’re seeing a lot in partnerships between telcos and electric cooperatives. Anybody willing to invest in rural broadband should be eligible to participate.

FCC Proposes Rules for $20.4 Billion Broadband Grants

On August 2 the FCC released a Notice of Proposed Rulemaking (NPRM) that proposes rules for the upcoming grant program that will award $20.4 billion for rural broadband. Since every FCC program needs a name, this grant program is now designated as the Rural Digital Opportunity Fund (RDOF). An NPRM is theoretically only a list of suggestions by the FCC, and there is a comment period that will commence 30 days after the NPRM is posted in the Federal Register. However, realistically, the rules that are proposed in the NPRM are likely to be the rules of the grant program. Here are a few of the highlights:

Timing of Award. The FCC proposes awarding the money in two phases. The Phase I award will be awarded late next year and will award over $16 billion. The Phase II will award will follow and award the remaining $4.4 billion. I know a lot of folks were hoping for a $2 billion annual grant award – but most of the money will be awarded next year. Anybody interested in this program should already be creating a network design and a financial business plan because the industry resources to create business plans are going to soon be too busy to help.

The money will be paid out to grant recipients over 10 years, similar to the ACAM program for small telcos. Grant recipients need to understand the time value of money. If an ISP wins a $1 million grant and borrows money at a rate of 5.5% interest, then the actual value of the grant in today’s dollars is a little more than $750,000.

Areas Eligible for Award. The Phase I auction will only be awarded in areas that are wholly unserved using the definition of broadband as 25/3 Mbps or faster. The areas covered can’t have anybody capable of getting broadband faster than that. The FCC is likely to publish a list of areas eligible for the Phase I grants. Unfortunately, the FCC will use its flawed mapping program to make this determination. This is likely to mean that many parts of the country that ought to be eligible for these grants might not be part of the program.

Phase II is likely to be targeted at areas that did not see awards in Phase I. One of the open questions in the NPRM that is not yet firm is the size of award areas. The NPRM asks if the minimum coverage area should be a census block or a county. It also asks if applicants can bundle multiple areas into one grant request.

The FCC is considering prioritizing areas it thinks are particularly needy. For example, it may give extra grant weighting to areas that don’t yet have 10/1 Mbps broadband. The FCC is also planning on giving extra weighting to some tribal areas.

Weighting for Technology. Like with the CAF II reverse auction, the grant program is going to try to give priority to faster broadband technologies. The FCC is proposing extra weighting for technologies that can deliver at least 100 Mbps and even more weighting for technologies that can deliver gigabit speeds. They are also proposing a grant disincentive for technologies with a latency greater than 100 milliseconds.

Use of Funds. Recipients will be expected to complete construction to 40% of the grant eligible households by the end of the third year, with 20% more expected annually and the whole buildout to be finished by the end of the sixth year.

Reverse Auction. The FCC is proposing a multi-round, descending clock reverse auction so that bidders who are willing to accept the lowest amount of subsidy per passing will win the awards. This is the same process used in the CAF II reverse auctions.

Overall Eligibility. It looks like the same rules for eligibility will apply as with previous grants. Applicants must be able to obtain Eligible Telecommunications Carrier (ETC) status to apply, meaning they must be a facilities-based retail ISP. This will exclude entities such as open access networks where the network owner is a different entity than the ISP. Applicants will also need to have a financial track record, meaning start-up companies need not apply. Applicants must also provide proof of financing.

Measurement Requirements. Grant winners will be subject to controlled speed tests to see if they are delivering what was promised. The FCC is asking if they should keep the current test – where only 70% of customers must meet the speed requirements for an applicant to keep full funding.

I see problems with a few of these requirements that I’ll cover in upcoming blogs.