Are You Ready for 10 Gbps?

Around the world, we’re seeing some migration to 10 Gbps residential broadband. During the last year the broadband providers in South Korea, Japan, and China began upgrading to the next-generation PON and are offering the blazingly fast broadband products to consumers. South Korea is leading the pack and expects to have the 10 Gbps speed to about 50% of subscribers by the end of 2022.

In the US there are a handful of ISPs offering a 10 Gbps product, mostly for the publicity – but they stand ready to install the faster product. Notable is Fibrant in Salisbury, NC and EPB in Chattanooga. EPB which was also among the first to offer a 1 Gbps residential product a few years ago.

I have a lot of clients who already offer 10 Gbps connections to large business and carrier customers to serve large businessesn like data centers and hospital complexes. However, except for the few pioneers, these larger bandwidth products are being delivered directly to a single customer using active Ethernet technology.

There are a few hurdles for offering speeds over a gigabit in the US. Perhaps foremost is that there are no off-the-shelf customer electronics that can handle speeds over a gigabit – the typical WiFi routers and computers work at slower speeds. The biggest hurdle for an ISP continues to be the cost of the electronics. Today the cost of next-generation PON equipment is high and will remain so until the volume of sales brings the per-unit prices down. The industry market research firm Ovum predicts that we’ll see wide-spread 10 Gbps consumer products starting in 2020 but not gaining traction until 2024.

In China, Huawei leads the pack. The company has a 10 Gbps PON system that is integrated with a 6 Gbps WiFi 6 router for the home. The system is an easy and overlay on top of the company’s traditional GPON network gear. In South Korea the largest ISP SK Broadband has worked with Nokia to develop a proprietary PON technology only used today inside of South Korea. Like Huawei, this overlays onto the existing GPON network. In Japan the 10 Gbps PON network is powered by Sumitomo, a technology only being sold in Japan. None of these technologies has made a dent in the US market, with Huawei currently banned due to security concerns.

In the US there are two technologies being trialed. AT&T is experimenting with XGS-PON technology. They plan to offer 2 Gbps broadband, upgradable to 10 Gbps in the new high-tech community of Walsh Ranch being built outside of Ft. Worth. AT&T is currently trialing the technology at several locations within its FTTP network that now covers over 12 million passings. Verizon is trying the NG-PON2 technology but is mostly planning to use this to power cell sites. It’s going to hard for any ISP to justify deployment of the new technologies until somebody buys enough units to pull down the cost.

Interestingly, Cable Labs is also working on a DOCSIS upgrade that will allow for faster speeds up to 10 Gbps. The problem most cable networks will have is in finding space of their network for the needed channels to support the faster speeds.

There are already vendors and labs exploring 25 Gbps and 50 Gbps PON. These products will likely be used for backhaul and transport at first. The Chinese vendors think the leap forward should be to 50 Mbps while other vendors are all considering a 25 Mbps upgrade path.

The real question that needs to be answered is if there is any market for 10 Gbps bandwidth outside the normally expected uses like cellular towers, data centers, and large business customers. This same question was asked when EPB at Chattanooga and LUS in Lafayette, Louisiana rolled out the earliest 1 Gbps residential bandwidth. Both companies were a bit surprised when they got a few instant takers for the faster products – in both markets from doctors that wanted to be able to analyze MRIs and other big files at home. There are likely a few customers who need speeds above 1 Gbps, with doctors again being good candidates. Just as broadband speeds have advanced, the medical imaging world has grown more sophisticated in the last decade and is creating huge data files. The ability to download these quickly offsite will be tempting to doctors.

I think we are finally on the verge of seeing data use cases that can eat up most of a gigabit of bandwidth in the residential environment. For example, uncompressed virtual and augmented reality can require masses of downloaded data in nearly real-time. As we start seeing use cases for gigabit speeds, the history of broadband has shown that the need for faster speeds is probably not far behind.

What’s the Next FTTP Technology?

There is a lot of debate within the industry about the direction of the next generation of last mile fiber technology. There are three possible technologies that might be adopted as the preferred next generation of electronics – NG-PON2, XGS-PON or active Ethernet. All of these technologies are capable of delivering 10 Gbps streams to customers.

Everybody agrees that the current widely deployed GPON is starting to get a little frayed around the edges. That technology delivers 2.4 Gbps downstream and 1 Gbps upstream for up to 32 customers, although most networks I work with are configured to serve 16 customers at most. All the engineers I talk to think this is still adequate technology for residential customers and I’ve never heard of a neighborhood PON being maxed out for bandwidth. But many ISPs already use something different for larger business customers that demand more bandwidth than a PON can deliver.

The GPON technology is over a decade old, which generally is a signal to the industry to look for the next generation replacement. This pressure usually starts with vendors who want to make money pushing the latest and greatest new technology – and this time it’s no different. But after taking all of the vendor hype out of the equation it’s always been the case that any new technology is only going to be accepted once that new technology achieves and industry-wide economy of scale. And that almost always means being accepted by at least one large ISP. There are a few exceptions to this, like what happened with the first generation of telephone smart switches that found success with small telcos and CLECs first – but most technologies go nowhere until a vendor is able to mass manufacture units to get the costs down.

The most talked about technology is NG-PON2 (next generation passive optical network). This technology works by having tunable lasers that can function at several different light frequencies. This would allow more than one PON to be transmitted simultaneously over the same fiber, but at different wavelengths. But that makes this a complex technology and the key issue is if this can ever be manufactured at price points that can match other alternatives.

The only major proponent of NG-PON2 today is Verizon which recently did a field trial to test the interoperability of several different vendors including Adtran, Calix, Broadcom, Cortina Access and Ericsson. Verizon seems to be touting the technology, but there is some doubt if they alone can drag the rest of the industry along. Verizon seems enamored with the idea of using the technology to provide bandwidth for the small cell sites needed for a 5G network. But the company is not building much new residential fiber. They announced they would be building a broadband network in Boston, which would be their first new construction in years, but there is speculation that a lot of that deployment will use wireless 60 GHz radios instead of fiber for the last mile.

The big question is if Verizon can create an economy of scale to get prices down for NG-PON2. The whole industry agrees that NG-PON2 is the best technical solution because it can deliver 40 Gbps to a PON while also allowing for great flexibility in assigning different customers to different wavelengths. But the best technological solution is not always the winning solution and the concern for most of the industry is cost. Today the early NG-PON2 electronics is being priced at 3 – 4 times the cost of GPON, due in part to the complexity of the technology, but also due to the lack of economy of scale without any major purchaser of the technology.

Some of the other big fiber ISPs like AT&T and Vodafone have been evaluating XGS-PON. This technology can deliver 10 Gbps downstream and 2.5 Gbps upstream – a big step up in bandwidth over GPON. The major advantage of the technology is that is uses a fixed laser which is far less complex and costly. And unlike Verizon, these two companies are building a lot more FTTH networks that Verizon.

And while all of this technology is being discussed, ISPs today are already delivering 10 Gbps data pipes to customers using active Ethernet (AON) technology. For example, US Internet in Minneapolis has been offering 10 Gbps residential service for several years. The active Ethernet technology uses lower cost electronics than most PON technologies, but still can have higher costs than GPON due to the fact that there is a dedicated pair of lasers – one at the core and one at the customer site – for each customer. A PON network instead uses one core laser to serve multiple customers.

It may be a number of years until this is resolved because most ISPs building FTTH networks are still happily buying and installing GPON. One ISP client told me that they are not worried about GPON becoming obsolete because they could double the capacity of their network at any time by simply cutting the number of customers on a neighborhood PON in half. That would mean installing more cards in the core without having to upgrade customer electronics.

From what everybody tells me GPON networks are not experiencing any serious problems. But it’s obvious as the household demand for broadband keeps doubling every three years that the day will come when these networks will experience blockages. But creative solutions like splitting the PON could keep GPON working great for a decade or two. And that might make GPON the preferred technology for a long time, regardless of the vendors strong desire to get everybody to pay to upgrade existing networks.