More FCC Mapping Woes

The FCC has another new billion dollar grant program, this one aimed to improve rural cellular coverage. Labeled as the Mobility Fund II the program will conduct a reverse auction sometime next year to give $4.53 billion to cellular carriers to extend wireless coverage to the most remote parts of the country. For taking the funding a cellular carrier must bring 4G LTE coverage to the funded areas and achieve cellular download speeds of at least 10 Mbps. Funding will be distributed over 10 years with build out requirements sooner than that.

Just like with the CAF II program, the areas eligible for funding are based upon the FCC’s broadband maps using data collected by the existing cellular carriers. As you might expect, the maps show that the parts of the country with the worst coverage – those eligible for funding – are mostly in the mountains and deserts of the west and in Appalachia.

The release of the Mobility Fund II maps instantly set off an uproar as citizens everywhere complained about lack of cellular coverage and politicians from all over the country asked the FCC why there wasn’t more funding coming to their states. The FCC received letters from senators in Mississippi, Missouri, Maine and a number of other states complaining that their states have areas with poor or non-existent cellular coverage that were not covered be the new fund.

If you’ve traveled anywhere in rural America you know that there are big cellular dead spots everywhere. I’ve been to dozens of rural counties all across America in the last few years and every one of them has parts of their counties without good cellular coverage. Everybody living in rural America can point to areas where cellphones don’t work.

The issue boils down to the FCC mapping used to define cellular and broadband coverage. The maps for this program were compiled from a one-time data request to the cellular carriers asking for existing 4G coverage. It’s obvious by the protests that the carriers claim cellular coverage where it doesn’t exist.

In August, the Rural Wireless Association (RWA) filed a complaint with the FCC claiming that Verizon lied about its cellular coverage by claiming coverage in many areas that don’t have it. This is the association of smaller wireless companies (they still exist!). They say that the Verizon’s exaggerated coverage claims will block the funding to many areas that should be eligible.

The Mobility Fund II program allows carriers to challenge the FCC’s maps by conducting tests to identify areas that don’t have good cellular coverage. The smaller carriers in the RWA have been filing these challenges and the FCC just added 90 additional days for the challenge process. Those challenges will surely add new eligible coverage areas for this program.

But the challenge program isn’t going to uncover many of these areas because there are large parts of the country that are not close to an RWA carrier, and which won’t be challenged. People with no cellular coverage that are not part of the this grant program might never get good cellular coverage – something that’s scary as the big telcos plan to tear down copper in rural America.

The extent of the challenges against the Verizon data are good evidence that Verizon overstated 4G LTE coverage. The RWA members I know think Verizon did this purposefully to either block others from expanding cellular networks into areas already served by Verizon or to perhaps direct more of this new fund to areas where Verizon might more easily claim some of the $4.5 billion.

To give Verizon a tiny amount of credit, knowing cellular coverage areas is hard. If you’ve ever seen a coverage map from a single cell tower you’ll instantly notice that it looks like a many-armed starfish. There are parts of the coverage area where good signal extends outward for many miles, but there are other areas where the signal is blocked by a hill or other impediments. You can’t draw circles on a map around a cell tower to show coverage because it only works that way on the Bonneville Salt Flats. There can be dead spots even near to the cell tower.

The FCC fund is laudable in that it’s trying to bring cellular coverage to those areas that clearly don’t have it. But there are countless other holes in cellular coverage that cannot be solved with this kind of fund, and people living in the many smaller cellular holes won’t get any relief from this kind of funding mechanism. Oddly, this fund will bring cellular coverage to areas where almost nobody lives while not addressing cellular holes in more populated areas.

Do We Need 10 Gbps?

wraparound-glassesWe are just now starting to see a few homes nationwide being served by a 1 Gbps data connection. But the introduction of DOCSIS 3.1 cable modems and a slow but steady increase in fiber networks will soon make these speeds available to millions of homes.

Historically we saw home Internet speeds double about every three years, dating back to the 1980s. But Google Fiber and others leapfrogged that steady technology progression with the introduction of 1 Gbps for the home.

There are not a whole lot of home uses today that require a full gigabit of speed – but there will be. Home usage of broadband is still doubling about every three years and homes will catch up to that speed easily within a few years. Cisco recently said that the average home today needs 24 Mbps speeds but by 2019 will need over 50 Mbps. It won’t take a whole lot of doublings of those numbers to mean that homes will expect a lot more speed than we are seeing today.

There is a decent chance that the need for speed is going to accelerate. Phil McKinney of CableLabs created this video that shows what a connected home might look like in the near future. The home owns a self-driving car. The video shows a mother working at home with others using a collaboration wall, with documents suspended in the air. It shows one daughter getting a holographic lecture from Albert Einstein while another daughter is talking with her distant grandmother, seemingly in a meadow somewhere. And it shows the whole family using virtual / enhanced reality goggles to engage in a delightful high-tech game.

This may seem like science fiction, but all of these technologies are already being developed. I’ve written before about how we are at the start of the perfect storm of technology innovation. Our past century was dominated by a few major new technologies and the recent forty years has been dominated by the computer chip. But there are now literally dozens of potentially transformational technologies all being developed at the same time. It’s impossible to predict which ones will have the biggest influence on daily life – but many of them will.

Most of these new technologies are going to require a lot of bandwidth. Whether it’s enhanced reality, video collaboration, robots, medical monitoring, self-driving cars or the Internet of Things, we are going to see a lot of needs for bandwidth much greater than today’s surge due to video. The impact of video, while huge today, will pale against the bandwidth needs of these new technologies – particularly when they are used together as implied in this video.

So it’s not far-fetched to think that we are going to need homes with bandwidth needs beyond the 1 Gbps data speeds we are just now starting to see. I’m always disappointed when I see ISP executives talking about how their latest technology upgrades are making them future proof. There are only two technologies that can meet the kinds of speeds envisioned in McKinney’s video – fiber and cable networks. These speeds are not going to be delivered by telephone copper or wirelessly, and to think so is to ignore the basic physics underlying each technology.

Some of the technologies shown in KcKinney’s video are going to start becoming popular within five years, and within twenty years they will all be mature technologies that are part of everyday life. We need to have policies and plans that look towards building the networks we are going to need to achieve that future. We have to stop having stupid government programs that throw away money on expanding DSL and we need to build networks that have use beyond just a few years.

McKinney’s video is more than just an entertaining glimpse into the near-future; it’s also meant to prod us into making sure that we are ready for that future. There are many companies today investing in technologies that can’t deliver gigabit speeds – and such companies will grow obsolete and disappear within a decade or two. And policies that do anything other than promote gigabit networks are a waste of time and resources.