FCC Modifies Broadband Mapping Parameters

Last week the FCC decided to change the method of collecting data to support its broadband maps. It’s widely understood that the current mapping system badly misstates broadband coverage. That’s a big problem since the FCC uses the faulty broadband mapping data to make decisions like determining eligibility for broadband grants.

The most important new change is that ISPs have to produce mapping ‘polygons’ to show where they have existing customers. The ISP polygons can cover areas without current customers only where an ISP “has a current broadband connection or it could provide such a connection within ten business days of a customer request and without an extraordinary commitment of resources or construction costs exceeding an ordinary service activation fee.”

The new polygons fix one of the big flaws in the current broadband map. The polygons are going to make a noticeable difference when showing coverage for a cable company or a fiber-to-the-home network. Those networks have hard boundaries – there is always a last home served at the edge of the service area after which nobody else is covered. Today’s mapping by census block doesn’t recognize the hard boundaries of these networks and often counts customers outside these networks as having access to fast data speeds. This is particularly a problem in rural areas where a large area outside a small town might be counted as having 100 Mbps or faster broadband when there is no broadband.

Unfortunately, I don’t see the new maps making a big difference for the rest of rural America unless the ISPs providing DSL and fixed wireless service get scrupulously honest with reporting.  I contend that it is difficult, and perhaps impossible to accurately map these technologies – particularly for disclosing the broadband speed available at a given customer location.

Consider DSL. There are several factors that affect the speed of a DSL product. The one everybody knows is that the amount of delivered bandwidth decreases with distance from the DSLAM (the DSL core modem). However, the quality of DSL performance also depends upon the gauge of the copper serving a customer (there are different sizes of copper in a network), the quality of that copper (copper deteriorates over time), issues with the drop wire (drop wires can suffer from a variety of issues separate from issues in the network), the age and type of DSL electronics (there is still plenty of DSL from the 1990s), and the telco technology used on a given copper route to boost or extend signals. There are also customers who can’t get DSL due to the simple issue that a telco has no spare pairs of copper with which to serve them.

It is not unusual for two customers who are side by side to have a drastically different DSL experience – one might have a decent speed and one might not be able to get any DSL service. There is no way for a telco to reflect these highly local conditions on a broadband map. I’m doubtful that the big telcos even track the speeds available to existing customers. The telcos can’t know anything about homes that don’t have their service today.

The same goes for fixed wireless. Broadband speeds also decrease with distance from the tower. Wireless broadband speeds can vary with temperature and humidity. There is a definite fall-off in speed during precipitation. Wireless broadband using unlicensed spectrum is subject to interference, which can mysteriously come and go. The biggest obstacle for many wireless customers is foliage and other obstacles between a customer and the wireless tower. Just like with DSL, wireless companies don’t have any idea what speed they can deliver to a customer who is not on their network. They usually only know what’s available after climbing on a roof to investigate a connection.

Another big issue the FCC didn’t address is reporting of actual speeds. Our examination of the FCC mapping data for both DSL and fixed wireless shows that many ISPs don’t try to report actual broadband speeds. Instead, we see marketing speeds or something other speed standard being reported. Even if these providers map the polygons correctly, we won’t have a good idea of rural broadband coverage unless the ISPs try hard to report actual speeds. We hear from customers all the time that are being sold a rural broadband product that is marketed to deliver speeds of 10 Mbps, 15 Mbps, or 25 Mbps but which delivers only a few Mbps. If the maps don’t reflect the actual speeds they will still be largely worthless.

One last issue is a head-scratcher. Many rural networks are oversubscribed, meaning there are more customers than can comfortably be accommodated at the busiest usage times on the networks. How do you report the broadband speed for a customer who can get 20 Mbps downloads at 4:00 AM but 3 Mbps in the evening?

I applaud the FCC for finally getting rid of the census blocks. But we can’t pretend that this fix is going to make much of a difference for most of rural America. The rural broadband gap is mostly due to the neglected copper networks of the largest telcos. I can’t imagine any way to ever accurately map DSL and fixed wireless technologies., which means the maps are still going to be terrible in the places we most care about. The FCC is still going to harming rural America if they use the new maps to make decisions for important things like awarding grant money. The only real fix is to throw the maps away for those purposes and do something more sensible. For example, grant money ought to always be available to somebody that wants to build fiber to replace big telco copper – we don’t need a map to know that is good policy.

Is the FCC Disguising the Rural Broadband Problem?

Buried within the FCC’s February Broadband Deployment Report are some tables that imply that over 95% of American homes can now get broadband at speeds of at least 25/3 Mbps. That is drastically higher than the report just a year earlier. The big change in the report is that the FCC is now counting fixed wireless and satellite broadband when compiling the numbers. This leads me to ask if the FCC is purposefully disguising the miserable condition of rural broadband?

I want to start with some examples from this FCC map that derives from the data supporting the FCC’s annual report. I started with some counties in Minnesota that I’m familiar with. The FCC database and map claims that Chippewa, Lyon, Mille Lacs and Pope Counties in Minnesota all have 100% coverage of 25/3 broadband. They also claim that Yellow Medicine County has 99.59% coverage of 25/3 Mbps broadband and the folks there must be wondering who is in that tiny percentage without broadband.

The facts on the ground tell a different story. In real life, the areas of these counties served by the incumbent telcos CenturyLink and Frontier have little or no broadband outside of towns. Within a short distance from each town and throughout the rural areas of the county there is no good broadband to speak of – certainly not anything that approaches 25/3 Mbps. I’d love to hear from others who look at this map to see if it tells the truth about where you live.

Let me start with the FCC’s decision to include satellite broadband in the numbers. When you go to the rural areas in these counties practically nobody buys satellite broadband. Many tried it years ago and using it is a miserable experience. There are a few satellite plans that offer speeds as fast as 25/3 Mbps. But satellite broadband today has terrible latency, as high as 900 milliseconds. Anything over 100 milliseconds makes it hard or impossible to do any real-time computing. That means on satellite broadband that you can’t stream video. You can’t have a Skype call. You can’t connect to a corporate WAN and work from home or connect to online classes. You will have problems staying on many web shopping sites. You can’t even make a VoIP call.

Satellite broadband also has stingy data caps that make it impossible to use as a home broadband connection. Most of the plans come with a monthly data caps of 10 GB to 20 GB, and unlike cellular plans where you can buy additional data, the satellite plans cut you off for the rest of the month when you hit your data cap. And even with all of these problems, it’s also expensive and is priced higher than landline broadband. Rural customers have voted with their pocketbooks that satellite broadband is not broadband that many people are willing to tolerate.

Fixed wireless is a more mixed bag. There are high-quality fixed wireless providers who are delivering speeds as fast as 100 Mbps. But as I’ve written about, most rural fixed broadband delivers speeds far below this and the more typical fixed wireless connection is somewhere between 2 Mbps and 6 Mbps.

There are a number of factors needed to make a quality fixed broadband connection. First, the technology must be only a few years old because older radios older were not capable of reaching the 25/3 speeds. Customers also need a clear line-of-sight back to the transmitter and must be within some reasonable distance from a tower. This means that there are usually s significant number of homes in wireless service areas that can’t get any coverage due to trees or being behind a hill. Finally, and probably most importantly, the wireless provider needs properly designed network and a solid backhaul data pipe. Many WISPs pack too many customers on a tower and dilute the broadband. Many wireless towers are fed by multi-hop wireless backhaul, meaning the tower doesn’t have enough raw bandwidth to deliver a vigorous customer product.

In the FCC’s defense, most of the data about fixed wireless that feeds the database and map is self-reported by the WISPs. I am personally a big fan of fixed wireless when it’s done right and I was a WISP customer for nine years. But there are a lot of WISPs who exaggerate in their marketing literature and tell customers they sell broadband up to 25/3 Mbps when their actual product might only be a tiny fraction of those speeds. I have no doubt that these WISPs also report those marketing speeds to the FCC, which leads to the errors in the maps.

The FCC should know better. In those counties listed above I would venture to say that there are practically no households who can get a 25/3 fixed wireless connection, but there are undoubtedly a few. I know people in these counties gave up on satellite broadband many years ago. My conclusion from the new FCC data is that this FCC has elected to disguise the facts by claiming that households have broadband when they don’t. This is how the FCC is letting themselves off the hook for trying to fix the rural broadband shortages that exist in most of rural America. We can’t fix a problem that we won’t even officially acknowledge, and this FCC, for some reason, is masking the truth.