Is the FCC Disguising the Rural Broadband Problem?

Buried within the FCC’s February Broadband Deployment Report are some tables that imply that over 95% of American homes can now get broadband at speeds of at least 25/3 Mbps. That is drastically higher than the report just a year earlier. The big change in the report is that the FCC is now counting fixed wireless and satellite broadband when compiling the numbers. This leads me to ask if the FCC is purposefully disguising the miserable condition of rural broadband?

I want to start with some examples from this FCC map that derives from the data supporting the FCC’s annual report. I started with some counties in Minnesota that I’m familiar with. The FCC database and map claims that Chippewa, Lyon, Mille Lacs and Pope Counties in Minnesota all have 100% coverage of 25/3 broadband. They also claim that Yellow Medicine County has 99.59% coverage of 25/3 Mbps broadband and the folks there must be wondering who is in that tiny percentage without broadband.

The facts on the ground tell a different story. In real life, the areas of these counties served by the incumbent telcos CenturyLink and Frontier have little or no broadband outside of towns. Within a short distance from each town and throughout the rural areas of the county there is no good broadband to speak of – certainly not anything that approaches 25/3 Mbps. I’d love to hear from others who look at this map to see if it tells the truth about where you live.

Let me start with the FCC’s decision to include satellite broadband in the numbers. When you go to the rural areas in these counties practically nobody buys satellite broadband. Many tried it years ago and using it is a miserable experience. There are a few satellite plans that offer speeds as fast as 25/3 Mbps. But satellite broadband today has terrible latency, as high as 900 milliseconds. Anything over 100 milliseconds makes it hard or impossible to do any real-time computing. That means on satellite broadband that you can’t stream video. You can’t have a Skype call. You can’t connect to a corporate WAN and work from home or connect to online classes. You will have problems staying on many web shopping sites. You can’t even make a VoIP call.

Satellite broadband also has stingy data caps that make it impossible to use as a home broadband connection. Most of the plans come with a monthly data caps of 10 GB to 20 GB, and unlike cellular plans where you can buy additional data, the satellite plans cut you off for the rest of the month when you hit your data cap. And even with all of these problems, it’s also expensive and is priced higher than landline broadband. Rural customers have voted with their pocketbooks that satellite broadband is not broadband that many people are willing to tolerate.

Fixed wireless is a more mixed bag. There are high-quality fixed wireless providers who are delivering speeds as fast as 100 Mbps. But as I’ve written about, most rural fixed broadband delivers speeds far below this and the more typical fixed wireless connection is somewhere between 2 Mbps and 6 Mbps.

There are a number of factors needed to make a quality fixed broadband connection. First, the technology must be only a few years old because older radios older were not capable of reaching the 25/3 speeds. Customers also need a clear line-of-sight back to the transmitter and must be within some reasonable distance from a tower. This means that there are usually s significant number of homes in wireless service areas that can’t get any coverage due to trees or being behind a hill. Finally, and probably most importantly, the wireless provider needs properly designed network and a solid backhaul data pipe. Many WISPs pack too many customers on a tower and dilute the broadband. Many wireless towers are fed by multi-hop wireless backhaul, meaning the tower doesn’t have enough raw bandwidth to deliver a vigorous customer product.

In the FCC’s defense, most of the data about fixed wireless that feeds the database and map is self-reported by the WISPs. I am personally a big fan of fixed wireless when it’s done right and I was a WISP customer for nine years. But there are a lot of WISPs who exaggerate in their marketing literature and tell customers they sell broadband up to 25/3 Mbps when their actual product might only be a tiny fraction of those speeds. I have no doubt that these WISPs also report those marketing speeds to the FCC, which leads to the errors in the maps.

The FCC should know better. In those counties listed above I would venture to say that there are practically no households who can get a 25/3 fixed wireless connection, but there are undoubtedly a few. I know people in these counties gave up on satellite broadband many years ago. My conclusion from the new FCC data is that this FCC has elected to disguise the facts by claiming that households have broadband when they don’t. This is how the FCC is letting themselves off the hook for trying to fix the rural broadband shortages that exist in most of rural America. We can’t fix a problem that we won’t even officially acknowledge, and this FCC, for some reason, is masking the truth.

Congress Supporting Comcast Data Caps?

Poor-customer-satisfaction-272x300There is currently a bill in the House, HR-2666, that will do two primary things – stop the FCC from regulating broadband rates and exempt smaller ISPs from some of the reporting requirements from the net neutrality law.

For the life of me I can’t understand why nobody in the press sees this as a bill that would stop the FCC from regulating data caps like the one that Comcast is currently trialing. The Comcast data caps are massively unpopular and there have already been nearly 10,000 complaints about the data caps at the FCC even though the trials are only in a few markets. Since most people aren’t going to go to the trouble to officially complain, there are undoubtedly a whole lot more people unhappy with Comcast’s data caps.

And they should be. The data caps are being peddled by Comcast as a fairness issue when they are just a blatant price increase. I actually would be a little less incensed about what Comcast is doing if along with raising rates for large data users they also lowered the rates for smaller users. That would be rate rebalancing and could be argued as something fair. But since rates can only be increased this just means a lot more revenue for Comcast with practically zero additional costs to justify it.

I guess it’s not surprising that Congress would support the large ISPs over people since that seems to be the trend these days. This bill would also stop any action at the FCC against the very unpopular data caps on cellular data. While there is no guarantee that this becomes law, this seems to have bilateral support, so there is a good chance this could become law.

As also seems typical these days, the bill bundles something distasteful with something that few people are  against. The bill will excuse small ISPs from complying with the detailed customer notice requirements which are intended to tell people the truth about their broadband connections.

If you are a small carrier and have a good network you should not be afraid of this requirement, and in fact you ought to comply to point out the difference between you and your competitors. I certainly will be advising companies to comply with this requirement even if this law excuses them. If you have a good network and offer an honest broadband product you ought to crow about it in every way imaginable.

Interestingly, some of the small companies complaining about the notice regulations are WISPs, or wireless ISPs. While there are many very good WISPs, I also get reports from rural communities of WISPs who lie badly about broadband speeds. If I was a rural customer and a WISP was my only option, I don’t know that I would be happy that Congress wants to give them an out from telling me the truth.

And the bill is not only about data caps. All of the big cable companies have made announcements over the last year or two that they now consider themselves as ISPs rather than cable companies. Since they are almost all publicly traded firms they are under tremendous pressure to keep increasing revenues and margins year after year. The only way they are going to be able to do that is to start regularly raising broadband rates in the same manner that they have historically raised cable rates. This bill will give them permission to raise rates as much as they like and and I think we can expect broadband to be much more expensive in the future.

In a free economy companies are generally allowed to charge whatever they want and the market is supposed to punish the greedy ones. The problem with broadband is that there are too many markets in the country where a given broadband provider has a virtual monopoly. Cable companies have mostly won the speed war, and in most markets their only competitor is much slower DSL that is being sold at low prices to those willing to accept slow speeds for low rates. For most households the cable company is the only broadband alternative – and that makes them a monopoly.

The FCC is supposed to regulate monopoly abuse in the telecom world. They have eased up on regulations of telephone service as it became more competitive. But we are in the opposite situation with broadband with the cable monopoly currently growing stronger day by day.

I am certainly going to complain to my own representatives about this bill, but if this is going to be stopped, then a whole lot of people need to be yelling in a hurry. I can sense that the big ISPs want to get this enacted before people figure out what this bill does. And Comcast surely would like this passed before they introduce their very unpopular data caps everywhere – because then the outcry might be too great to get it passed. But hopefully the red flag can be raised before it’s too late to do anything about this. This is the day I wish my blog had 100,000 readers!

How Many Households Have Broadband? – Part I

Polk County SignFCC Chairman Wheeler made a speech last week about the lack of broadband competition in the country. As part of the speech he released four bar charts showing the percentage of households that have competitive alternatives at the download speeds of 4 Mbps, 10 Mbps, 25 Mbps and 50 Mbps. His conclusion was that a large portions of the households in the US can only buy broadband from one or two service providers. I was glad to hear him talking about this.

But unfortunately there is a lot of inaccuracy in the underlying data that he used to come to this conclusion, particularly at the charts showing the slower speeds. The data that the FCC relies on for measuring broadband is known as the National Broadband Map. While the data gathered for that effort results in a Map, it’s really a database, by census block, that shows the number of providers and the fastest data speed they offer in a given area.

A census block is the smallest area of population summarized by the US Census. It is generally bounded by streets and roads and will contain from 200 – 700 homes (with the more populated blocks generally just in urban areas with high-rise housing). A typical rural census block is going to have 200 – 400 homes. The National Broadband Map gathers data from carriers that describe the broadband services they offer in each census block. As it turns out, self-reporting by carriers is a big problem when it comes to the accuracy of the Map. In tomorrow’s blog I will show a real life example of how this affects new deployment of rural broadband.

Broadband service providers don’t generally track their network by census blocks, so part of the problem is that census block don’t match the physical way  that broadband networks are deployed in a rural area. Anybody who lives in rural America understands how utilities work there. In every small town there is a very definite line where utilities like City water and cable TV stop. Those utilities get to the edge of the area where people live and they stop. That doesn’t match up well with Census blocks that tend to extend outward from many small towns to include rural areas. Rural census blocks are not going to conveniently stop where the utilities stop.

There are three widely used rural broadband technologies – cable modem, DSL and fixed wireless. Let’s look briefly at how each of these match with the broadband mapping effort. Cable is the easiest because every cable network has a discrete boundary. There is some customer at the end of every cable route and the next house down the road cannot get cable. So it is not too likely that the cable companies are claiming to serve census blocks where they have no customers.

DSL and fixed wireless are a lot trickier. Both of these technologies share the characteristic that the bandwidth available with the technology drops quickly with distance. For example, DSL can transmit over a few miles of copper from the last DSLAM in the network. The household right next to that DSLAM can get the full speed offered by the specific brand of DSL while the last house at the end of the DSL signal gets only a small fraction of the speed, often with speeds that are not really any better than dial-up.

The same thing happens with fixed wireless. A WISP will install a transmitter on a tower or tall structure and the customers close to that tower will get decent broadband, and those transmitters tend to be installed in small towns where people live. But wireless broadband speeds drop rapidly with distance from the transmitter and if you go more than a few miles from any tower there is barely any bandwidth.

Both telcos and WISPs input their coverage areas into the National Broadband Map database. And in doing so, it appears that they claim broadband anywhere where they can provide service of any kind. But for DSL and fixed wireless, that service-of-any-kind area is much larger than the area where they can deliver actual broadband. Remember that broadband is currently defined as the ability to deliver 4 Mbps download. Because of the nature of their technologies, a lot of the people who can buy something from them will get a product that is slower than 4 Mbps, and at the outer ends of their network speeds are far slower than that.

I don’t necessarily want to say that the carriers inputting into the system are lying, because in a lot of cases customers can call and order broadband and a technician will show up and install a DSL modem or a wireless antenna. But if that customer is too far away from the network hub, then the product that gets delivered to them is not broadband. It is something slower than the FCC definition of broadband, but it is probably better than dial-up. But customers with slow connections can’t use the Internet to watch Netflix or do a lot of the basic things that require actual broadband. And as each year goes by, and as more and more video is built into everything we do on the Internet there are more and more web sites and services that out of reach for such customers.

But unfortunately, there are also areas where it appears that the carriers have declared that they offer broadband where there isn’t any. If you were to draw something like a 5-mile circle around every rural DSLAM and every WISP transmitter you will see the sort of broadband coverage that many rural carriers are claiming. But the reality is that broadband can only be delivered for 2-3 miles, which means that the actual broadband coverage area is maybe only a fourth of what is shown on the Map. If you go door-to-door and talk to people outside of rural towns you will find a very different story than what is shown on the National Broadband Map. Unfortunately, the Chairman’s numbers are distorted by these weaknesses and distortions underlying the Map. There are a lot more rural Americans without broadband than are counted in the Map and rural America has far fewer broadband options than what the Chairman’s charts claim.

Tomorrow, a real life example.

Changes to Unlicensed Spectrum

Wi-FiEarlier this year in Docket ET No. 13-49 the FCC made a number of changes the unlicensed 5 GHz band of unlicensed spectrum. The docket was intended to unify the rules for using the 5 GHz spectrum. The FCC had made this spectrum available over time in several different chunks and had set different rules for the use of each portion. The FCC was also concerned about interference with some parts of the spectrum with doppler radar and with several government uses of spectrum. Spectrum rules are complex and I don’t want to spend the blog describing the changes in detail. But in the end, the FCC made some changes that wireless ISPS (WISPs) claim are going to kill the spectrum for rural use.

Comments filed by WISPA, the national association for WISPs claim that the changes that the FCC is making to the 5725 – 5850 MHz band is going to devastate rural data delivery from WISPs. The FCC is mandating that new equipment going forward use lower power and also use better filters to reduce out-of-band emissions. And WISPA is correct about what that means. If you understand the physics of wireless spectrum, each of those changes is going to reduce both the distance and the bandwidth that can be achieved with this slice of spectrum. I didn’t get out my calculator and spend an hour doing the math, but WISPA’s claim that this is going to reduce the effective distance for the 5 GHz band to about 3 miles seems like a reasonable estimate, which is also supported by several manufacturers of the equipment.

Some background might be of use in this discussion. WISPs can use three different bands of spectrum for delivering wireless data – 900 MHz, 2.4 GHz and 5 GHz. The two lower bands generally get congested fairly easy because there are a lot of other commercial applications using them. Plus, those two spectrums can’t go very far and still deliver significant bandwidth. And so to the extent they use those spectrums, WISPs tend to use them for customers residing closer to their towers. They save the 5 GHz spectrum for customers who are farther away and they use it for backhaul between towers. The piece of spectrum in question can be used to deliver a few Mbps to a customer up to ten miles from a transmitter. If you are a rural customer, getting 2 – 4 Mbps from a WISP still beats the heck out of dial-up.

Customers closer to a WISP transmitter can get decent bandwidth. About the fastest speed I have ever witnessed from a WISP was 30 Mbps, but it’s much more typical for customers within a reasonable distance from a tower to get something like 10 Mbps. That is a decent bandwidth product in today’s rural environment, although one has to wonder what that is going to feel like a decade from now.

Readers of this blog probably know that I spent ten years living in the Virgin Islands and my data connection there came from a WISP. On thing I saw there is the short life span of the wireless CPE at the home. In the ten years I was there I had three different receivers installed (one at the end) which means that my CPE lasted around 5 years. And the Virgin Islands is not a harsh environment since it’s around 85 degrees every day, unlike a lot of the US which has both freezing winters and hot summers. So the average WISP will need to phase in the new CPE to all customers over the next five to seven years as the old customer CPE dies. And they will need to use the new equipment for new customers.

That will be devastating to a WISP business plan. The manufacturers say that the new receivers may cost as much as $300 more to comply with the filtering requirements. I take that estimate with a grain of salt, but no doubt the equipment is going to cost more. But the real issue is the reduced distance and reduced bandwidth. Many, but not all, WISPs operate on very tight margins. They don’t have a lot of cash reserves and they rely on cash flow from customers to eke out enough extra cash to keep growing. They basically grow their businesses over time by rolling profits back into the business.

If these changes mean that WISPs can’t serve customers more than 3 miles from an existing antenna, there is a good chance that a lot of them are going to fail. They will be faced with either building a lot of new antennas to create smaller 3-mile circles or else they will have to abandon customers more than three miles away.

Obviously spectrum is in the purview of the FCC and some of the reasons why they are changing this spectrum are surely valid. But in this case they created an entire industry that relied upon the higher power level of the gear to justify a business plan and now they want to take that away. This is not going to be a good change for rural customers since over time many of them are going to lose their only option for broadband. While it is important to be sensitive to interference issues, one has to wonder how much interference there is out in the farm areas where these networks have been deployed. This impacts of this change that WISPA is warning about will be a step backward for rural America and rural bandwidth.