Final 2022 Statistics from Ookla

As a numbers guy, I’m always intrigued by the Ookla Speedtest Global Index since it provides an interesting look at broadband speeds in the U.S. and around the world. This report shows the median and mean upload speeds, download speeds, and latency for both mobile and fixed broadband by country.

The median download speeds for fixed broadband in the U.S. at the end of 2022 was 193.7 Mbps download, 22.6 Mbps upload, and 14 milliseconds of latency. As a reminder of statistics, the median means that half of all speed tests showed faster results and half slower results than those numbers. Ookla thinks that median speeds are the best way to track the overall market and the difference between carriers.

The fastest median download speeds for landline ISPs at the end of 2022 comes from Comcast at 226.1 Mbps. Charter was at 225.3 Mbps, Cox at 212.3 Mbps, Altice at 190.8 Mbps, AT&T Internet at 187.1 Mbps, and Verizon at 183.2 Mbps. Median upload speeds were obviously faster for ISPs using fiber, with the fourth quarter median upload speeds showing AT&T Internet at 142.8 Mbps, Verizon at 104.9 Mbps, Altice at 29.8 Mbps, Comcast at 20.4 Mbps, Charter at 11.8 Mbps, and Cox at 10.7 Mbps. Missing from these numbers are smaller fiber-only ISPs that have much faster median speeds than all of these large companies.

Those are interesting upload speeds for some of the cable companies during a year of upcoming giant BEAD grants since a large percentage of customers of the cable companies are clearly not achieving the 20 Mbps upload speeds that is being used by the grants to define an underserved customer. We’ve already seen some state broadband grants awarded in cable company service areas – will folks apply for BEAD grants to compete with underperforming cable companies?

The median download speeds for cellular broadband in the U.S. at the end of 2022 was 78.9 Mbps download, 9.3 Mbps upload, and 31 milliseconds of latency. For the fourth quarter of 2022, Ookla says that T-Mobile has the fastest download speeds – on the modern chipsets – of 151.4 Mbps, up significantly higher than the third quarter 2022 median speed of 116.1 Mbps. Ookla not only measures mobile speed tests, but records the type of device being used. Old flip phones still using 3G will have lower speeds based on the capacity of the device. At least for now, the median download speeds for T-Mobile are far faster than Verizon (69.0 Mbps) and AT&T (65.6 Mbps). This likely means to some extent that the Verizon and AT&T are still supporting a greater number of older and slower devices. Median upload speeds were closer with T-Mobile at 12.5 Mbps, Verizon at 9.3 Mbps, and AT&T at 8.0 Mbps.

Ookla shows mobile latencies are about the same between the carriers, with T-Mobile at 56 ms, Verizon at 58 ms, and AT&T at 60 ms. Ookla calculates what it calls a multi-server latency, which represents the latency that should be expected by the average user at times when the local network is not under heavy load.

I looked back at an old blog I wrote in 2017, and the differences in mobile broadband speeds between then and now are astonishing. For example, in a 2017 report, Ookla showed median cellular download speeds nationwide at 22.7 Mbps, which was up 19% over 2016. I took a speed test on AT&T when I wrote the 2017 blog and got a download speed test of 13 Mbps. I took a test this morning on my AT&T cell phone and got a download speed of 141 Mbps. That’s more than a tenfold increase in speed in just five years.

Back in that same time frame, I was writing about how the cellular data networks were getting badly clogged and overloaded. It didn’t strike me until I wrote this blog that one of the ways that cellular companies have stretched their network capacity is by increasing speeds. A tenfold increase in speed means that the time required to handle the data requirement for a given customer is reduced by that same magnitude. Upgrading to a faster network means increasing the capacity to serve a lot more customers without a major network upgrade.

Leave a Reply