Challenging the FCC Broadband Maps

I’ve written many times about the absurdity of using the FCC mapping data for identifying areas with or without broadband. I’ve lately been looking at the FCC mapping data in West Virginia and New Mexico – two of the states with the worst broadband coverage in the country – and the FCC maps are atrocious. I see counties where the claimed broadband coverage in the FCC maps is wrong for more than half of the geographic area.

Unfortunately, the FCC is about to award $20.4 billion in RDOF grants later this year based solely on these dreadful maps. Luckily, there are other grant programs that allow grant applicants to challenge the FCC data. This includes the USDA ReConnect grants and many of the state grant programs.

One of the few ways to challenge the FCC maps is with speed tests. Anybody undertaking such a challenge needs to be aware that the incumbent telcos might challenge your speed test results, and unfortunately, some of their criticisms will be right. This means that anybody challenging the FCC maps has to take some steps to maximize the effectiveness of speed tests. Here are a few aspects of administering speed tests that should be considered.

  • A speed test needs to distinguish between cellular and landline connections. Rural folks with no broadband connection or those using cellular for home broadband are going to take the test with their cellphone. While such results are interesting, cellular speed tests can’t be mixed into a challenge of landline broadband coverage.
  • Everybody needs to use the identical speed test because each speed test measures speed using a different algorithm. Never use a speed test from the incumbents – it might be baked to show too good results.
  • A challenge can be most effective if it can get feedback from folks with no broadband available at their home. You need to somehow solicit and include results from folks that can’t take the speed tests.
  • You also should be aware a speed test sometimes doesn’t work for somebody with really slow broadband or high latency. We recently sat on the phone with somebody using satellite broadband and they couldn’t get the speed test to complete, even after many attempts.
  • The biggest challenge is in mapping the results. If you map the results so precisely that the results can be overlaid on individual homes on Google Earth, then you have provided an incumbent ISP the chance to challenge the test results. They can likely identify homes where they aren’t the ISP, or homes that have broadband that meets the FCC speed thresholds, meaning that slow speed test results might be due to poor WiFi or some other reason. Ultra-precise mapping might also violate the privacy of the people taking the speed test, This is an issue that many state speed test programs have wrestled with – some of them take such care to mask the precise location of the data that their final product can’t be used to challenge the FCC maps. For example, if speed test results are summarized by Census blocks then the results incorporate the same kinds of problems that are included in the FCC maps. Probably the best approach is to embed the final results in a pdf that is of low enough resolution to not identify individual homes.

There is one other way to map broadband coverage. An experienced field technician or engineer can drive around an area and can identify every broadband asset in the field. They can precisely identify where the cable TV networks end, down to the house. They can identify field DSLAMs that generate DSL signals out of rural cabinets – and they can often precisely identify the flavor of DSL and know the maximum speed capability of a given unit. They can identify the location and height of wireless transmitters and can map out the likely coverage areas. This kind of effort is most effective at identifying where there is no broadband, A good technician can make a decent map of the likely maximum broadband speeds available in a given area – something that is rarely achieved on most rural networks. This kind of challenge could be expensive and time-consuming, and I’ve never seen a challenge done this way. But I know engineers and technicians capable of making highly accurate maps.

Communities can tackle speed tests – they can get households to take the same speed test, such as the speed test from Ookla, and then match and map the results using GIS data. This can be a lot of work. Mapping can also be provided by many telecom engineering companies. One of the lowest-costs solutions is a speed test by Neo Partners that administers the speed test and overlays the speed test results automatically on Google maps.

Even if you aren’t challenging a grant, communities ought to consider speed tests to better understand the broadband in their community. As an example, I worked for a city where the speed tests showed that one neighborhood had far slower speeds than the rest of the city – something the city hadn’t known before the speed test. We’ve done speed tests that showed that the incumbent was delivering more than the advertised speed – again, something worth knowing.

Another Story of Lagging Broadband

We don’t really need any more proof that the FCC broadband data is massively out of touch with reality. However, it seems like I see another example of this almost weekly. The latest news comes from Georgia where the Atlanta Journal-Constitution published an article that compared actual broadband speeds measured by speed tests to the FCC data. The newspaper analyzed speed tests from June through December 2017 and compared those results to the FCC databases of supposed broadband speeds for the same time period. Like everywhere else that has done this same comparison, the newspaper found the FCC data speeds to be overstated – in this case, way overstated.

The newspaper relied on speed tests provided by Measurement Labs, an Internet research group that includes Google, the Code for Science & Society, New America’s Open Technology Institute, and Princeton University’s PlanetLab. These speed tests showed an average Internet speeds of only 6.3 Mbps for areas where the FCC data reported speeds of 25 Mbps are available.

Anybody that understands the FCC mapping methodology knows that you have to make such a comparison carefully. The FCC maps are supposed to show available speeds and not actual speeds, so to some degree the newspaper is comparing apples and oranges. For instance, when multiple speeds are available, some people still elect to buy slower speeds to save money. I would expect the average speed in an area where 25 Mbps is the fastest broadband to be something lower than that.

However, the ultralow average speed test results of 6.3 Mbps points out a big problem in rural Georgia – homes electing to buy lower speeds can’t possibly account for that much of a difference. One thing we now know that is an area shown by the FCC to have 25 Mbps broadband speeds is probably served by DSL and perhaps by fixed wireless. The vast majority of cable companies now have speeds much faster than 25 Mbps and areas shown on the maps that are served by cable companies will show available speeds of at least 100 Mbps, and in many cases now show 1 Gbps.

The only way to explain the speed test results is that the FCC maps are wrong and the speeds in these areas are not really at the 25 Mbps level. That highlights one of the big fallacies in the FCC database, which is populated by the ISPs. The telcos are reporting speeds of ‘up to 25 Mbps’ and that’s likely what they are also marketing to customers in these areas. But in reality, much of the DSL is not capable of speeds close to that level.

The newspaper also gathered some anecdotal evidence. One of the areas that showed a big difference between FCC potential speed and actual speed is the town of Social Circle, located about 45 miles east of Atlanta. The newspaper contacted residents there who report that Internet speeds are glacial and nowhere near to the 25 Mbps as reported on the FCC maps. Several residents told the newspaper that the speeds are too slow to work from home – one of the major reasons that homes need faster broadband.

Unfortunately, there are real-life ramifications from the erroneous FCC maps. There have been several grant programs that could have provided assistance for an ISP to bring faster broadband to places like Social Circle – but those grants have been limited to places that have speeds less than 25 Mbps – the FCC definition of broadband. Areas where the maps are wrong are doubly condemned – they are stuck with slow speeds but also locked out of grant programs that can help to upgrade the broadband. The only beneficiary of the bad maps are the telcos who continue to sell inadequate DSL in towns like Social Circle where people have no alternative.

The State of Georgia has undertaken an effort to produce their own broadband maps in an attempt to accurately identify the rural broadband situation. The University of Georgia analyzed the FCC data which shows there was 638,000 homes and businesses that couldn’t get Internet with speeds of at least 25 Mbps. The state mapping effort is going to tell a different story, and if the actual slow speeds indicated by the speed tests are still true today then there are going to by many more homes that actually don’t have broadband.

It seems like every examination of the FCC mapping data shows the same thing – widespread claimed broadband coverage that’s not really there. Every time the FCC tells the public that we’re making progress with rural broadband, they are basing their conclusions on maps they know are badly flawed. It’s likely that there are many millions of more homes that don’t have broadband than claimed by the FCC – something they don’t want to acknowledge.