Gigabit LTE

Samsung just introduced Gigabit LTE into the newest Galaxy S8 phone. This is a technology with the capability to significantly increase cellular speeds, and which make me wonder if the cellular carriers will really be rushing to implement 5G for cellphones.

Gigabit LTE still operates under the 4G standards and is not an early version of 5G. There are three components of the technology:

  • Each phone has as 4X4 MIMO antenna, which is an array of four tiny antennae. Each antenna can make a separate connection to the cell tower.
  • The network must implement frequency aggregation. Both the phone and the cell tower must be able to combine the signals from the various antennas into one coherent data path.
  • Finally, the new technology utilizes the 256 QAM (Quadrature Amplitude Modulation) protocol which can cram more data into the cellular data path.

The amount of data speeds that can be delivered to a given cellphone under this technology is going to rely on a number of different factors:

  • The nearest cell site to a customer needs to be upgraded to the technology. I would speculate that this new technology will be phased in at the busiest urban cell sites first, then to busy suburban sites and then perhaps to less busy sites. It’s possible that a cellphone could make connections to multiple towers to make this work, but that’s a challenge with 4G technology and is one of the improvements promised with 5G.
  • The amount of data speed that can be delivered is going to vary widely depending upon the frequencies being used by the cellular carrier. If this uses existing cellular data frequencies, then the speed increase will be a combination of the impact of adding four data streams together, plus whatever boost comes from using 256 QAM, less the new overheads introduced during the process of merging the data streams. There is no reason that this technology could not use the higher millimeter wave spectrum, but that spectrum will use different antennae than lower frequencies.
  • The traffic volume at a given cell site is always an issue. Cell sites that are already busy with single antennae connections won’t have the spare connections available to give a cellphone more than one channel. Thus, a given connection could consist of one to four channels at any given time.
  • Until the technology gets polished, I’d have to bet that this will work a lot better with a stationary cellphone rather than one moving in a car. So expect this to work better in downtowns, convention centers, etc.
  • And as always, the strength of a connection to a given customer will vary according to how far a customer is from the cell site, the amount of local interference, the weather and all of those factors that affect radio transmissions.

I talked to a few wireless engineers and they guessed that this technology using existing cellular frequencies might create connections as fast as a few hundred Mbps in ideal conditions. But they could only speculate on the new overheads created by adding together multiple channels of cellular signal. There is no doubt that this will speed up cellular data for a customer in the right conditions, with the right phone near the right cell site. But adding four existing cellular signals together will not get close to a gigabit of speed.

It will be interesting to see how the cellular companies market this upgrade. They could call this gigabit LTE, although the speeds are likely to fall far short of a gigabit. They could also market this as 5G, and my bet is that at least a few of them will. I recall back at the introduction of 4G LTE that some carriers started marketing 3.5G as 4G, well before there were any actual 4G deployments. There has been so much buzz about 5G now for a year that the marketing departments at the cellular companies are going to want to tout that their networks are the fastest.

It’s always an open question about when we are going to hear about this. Cellular companies run a risk in touting a new technology if most bandwidth hungry users can’t yet utilize it. One would think they will want to upgrade some critical mass of cell sites before really pushing this.

It’s also going to be interesting to see how faster cellphone speeds affect the way people use broadband. Today it’s miserable to surf the web on a cellphone. In a city environment most connections are more than 10 Mbps today, but it doesn’t feel that fast because of shortfalls in the cellphone operating systems. Unless those operating systems get faster, there might not be that much noticeable different with a faster connection.

Cellphones today are already capable of streaming a single video stream, although with more bandwidth the streaming will get more reliable and will work under more adverse conditions.

The main impediment to faster cellphones really changing user habits is the data plans of the cellular carriers. Most ‘unlimited’ plans have major restrictions on using a cellphone to tether data for other devices. It’s that tethering that could make cellular data a realistic substitute for a home landline connection. My guess is until we reach a time when there are ubiquitous mini-cell sites spread everywhere that the cellular carriers are not going to let users treat cellular data the same as landline data. Until cellphones are allowed to utilize the broadband available to them, faster cellular data speeds might not have much impact on the way we use our cellphones.

Leave a Reply