In the recently released 2018 Broadband Progress Report the FCC reluctantly kept the official definition of broadband at 25/3 Mbps. I say reluctantly because three of the Commissioners were on record for either eliminating the standard altogether or else reverting back to the older definition of 10/1 Mbps.
I’m guessing the Commissioners gave in to a lot of public pressure to keep the 25/3 standard. Several Commissioners had also taken a public stance that they wanted to allow cellular data to count the same for a household as landline broadband – and that desire was a big factor in lowering the definition since cellphones rarely meet the 25/3 speed standard.
The deliberation on the topic this year raises the question if there is some way to create a rule that would better define the speed of needed broadband. It’s worth looking back to see how the Tom Wheeler FCC came up with the 25/3 definition. They created sample profiles of the way that households of various sizes are likely to want to use broadband. In doing so, they added together the bandwidth needed for various tasks such as watching a movie or supporting a cellphone.
But the FCC’s method was too simple and used the assumption that various simultaneous uses of broadband are additive. They added together the uses for a typical family of four which resulted in bandwidth needs greater than 20 Mbps download, and used that as the basis for setting the 25/3 standard. But that’s now home broadband works. There are several factors that affect the actual amount of bandwidth being used:
For example, doing simultaneous tasks on a broadband network increases the overhead on the home network. If you are watching a single Netflix stream, the amount of needed bandwidth is predictable and steady. But if three people in a home are each watching a different Netflix the amount of needed bandwidth is greater than adding together the three theoretical streams. When your ISP and your home router try to receive and untangle multiple simultaneous streams there are collisions of packets that get lost and which have to be retransmitted. This is described as adding ‘overhead’ to the transmission process. Depending on the nature of the data streams the amount of collision overhead can be significant.
Almost nobody directly wires the signal from their ISP directly too all of their devices. Instead we use WiFi to move data around to various devices in the home. A WiFi router has an overhead of its own that adds to the overall bandwidth requirement. As I’ve covered in other blogs, a WiFi network is not impacted only by the things you are trying to do in your home, but a WiFi network is slowed when it pauses to recognizes demands for connection from your neighbor’s WiFi network.
Any definition of home broadband needs should reflect these overheads. If a household actually tries to download 25 Mbps of usage from half a dozen sources at the same time on a 25 Mbps, the various overheads and collisions will nearly crash the system.
The FCC’s definition of broadband also needs to reflect the real world. For example, most of the unique programming created by Netflix and Amazon Prime are now available in 4K. I bought a large TV last year and we now watch 4K when it’s available. That means a stream of 15-20 Mbps download. That stream forced me to upgrade my home WiFi network to bring a router into the room with the TV.
The FCC’s speed definition finally needs to consider the busy hour of the day – the time when a household uses the most broadband. That’s the broadband speed that the home needs.
We know household bandwidth needs keep increasing. Ten years ago I was happy with a 5 Mbps broadband product. Today I have a 60 Mbps product that seems adequate, but I know from tests I did last year that I would be unhappy with a 25 Mbps connection.
The FCC needs a methodology that would somehow measure actual download speeds at a number of homes over time to understand what homes area really using for bandwidth. There are ways that this could be done. For example, the FCC could do something similar for broadband like what Nielsen does for cable TV. The FCC could engage one of the industry firms that monitor broadband usage such as Akamai to sample a large number of US homes. There could be sample voluntary homes that meet specific demographics that would allow monitoring of their bandwidth usage. The accumulated data from these sample homes would provide real-life bandwidth usage as a guide to setting the FCC’s definition of broadband. Rather than changing the official speed periodically, the FCC could change the definition as needed as dictated by the real-world data.
The FCC does some spot checking today of the broadband speeds as reported by the ISPs that feed the national broadband map. But that sampling is random and periodic and doesn’t provide the same kind of feedback that a formal ongoing measuring program would show. We have tools that could give the FCC the kind of feedback it needs. Of course, there are also political and other factors used in setting the official definition of broadband, and so perhaps the FCC doesn’t want real facts to get into the way.