Future Technology – May 2018

I’ve seen a lot of articles recently that promise big improvements in computer speeds, power consumption, data storage, etc.

Smaller Transistors. There has been an assumption that we are at the end of Moore’s Law due to reaching the limit on the smallness of transistors. The smallest commercially available transistors today are 10 nanometers in diameter. The smallest theoretical size for silicon transistors is around 7 nm since below that size the transistor can’t contain the electron flow due to a phenomenon called quantum tunneling.

However, scientists at the Department of Energy’s Lawrence Berkeley Laboratory have developed a 1 nanometer transistor gate, which is several magnitudes smaller than silicon transistors. The scientists used molybdenum disulfide, a lubricant commonly used in auto shops. Combining this material with carbon nanotubes allows electrons to be controlled at the 1 nm distance. Much work is still needed to go from lab to production, but this is the biggest breakthrough in transistor size in many years and if it works will provide a few more turns of Moore’s Law.

Better Data Storage. A team of scientists at the National University of Singapore have developed a technology that could be a leap forward in data storage technology. The breakthrough uses skyrmions which were identified in 2009. The scientists have combined cobalt and palladium into a film that is capable of housing the otherwise unstable skyrmions at room temperatures.

Once stabilized the skyrmions, at only a few manometers in size, can be used to store data. If these films can be stacked they would provide data storage with 100 times the density of current storage media. We need better storage since the amount of data we want to store is immense and expected to increase 10-fold over the next decade.

Energy Efficient Computers.  Ralph Merkle, Robert Freitas and others have created a theoretical design for a molecular computer than would be 100 billion times more energy efficient than today’s most energy efficient computers. This is done by creating a mechanical computer that creates small physical gates at the molecular level that mechanically open and close to create circuits. This structure would allow the creation of the basic components for computing such as AND, NAND, NOR, NOT, OR, XNOR and XOR gates without electronic components.

Today’s computers create heat due to the electrical resistance in components like transistors, and it’s this resistance that requires huge electricity bills to operate and then cool big data centers. Mechanical computer create less heat from the mechanical process of opening and closing logic gates, and this friction can be nearly eliminated by creating tiny gates at the molecular level.

More Powerful Supercomputers. Scientists at Rice University and the University of Illinois at Urbana-Champaign have developed a process that significantly lowers the power requirements while making supercomputers more efficient. The process uses a mathematical technique developed in the 1600s by Isaac Newton and Joseph Raphson that cut down on the number of calculations done by a computer. Computers normally calculate every mathematical formula to the seventh or eight decimal point, but using the Newton-Raphson tool can reduce the calculations to only the third or fourth decimal place while also increasing the accuracy of the calculations by three orders of magnitude (1000 times).

This method drastically reduces the amount of time needed process data, which makes the supercomputer faster while drastically reducing the amount of energy needed to perform a given calculation. This has huge implications when running complex simulations such as weather forecasting programs that require the crunching of huge amounts of data. Such programs can be run much more quickly while producing significantly more accurate results.

More on MIMO

Project_Diana_antennaOne of the technologies that is going to be needed to make the Internet of Things work better is MIMO. MIMO stands for multiple-input, multiple output and refers to using an array of antennas to communicate instead of a single antenna. MIMO technology can apply to different kinds of wireless including WiFi and cellular.

MIMO has been around for a few years and the latest high performance WiFi routers include the first generation MIMO technology. These wireless routers include multiple antennas that work together and the purpose for the antennas is to establish separate wireless routes to different devices.

When done smartly, MIMO dynamically sets up a different wireless path to a given device, so there would be a separate wireless path to your cell phone, your TV and your speaker system. The current MIMO routers can only establish a few separate paths at a time. So if you have more than a few wireless devices running at the same time (which many of us now do), then there is also a general broadcast signal that can be picked up by any device within range.

As you can imagine, establishing separate paths and doing it well can be a challenge. Some devices like cell phones and tablets are mobile within the environment and the router has to keep track of where each device is at. Done well the router will determine the right amount of power and bandwidth to give to each device.

But fast forward a few years when you also have a host of IoT devices in your home. Today in my house we often are running seven WiFi devices, but add to this an array of smart appliances, smoke detectors, security cameras, medical monitors and various toys and it’s easy to see that the normal home router could get overwhelmed in a hurry.

Scientists are already working on more sophisticated MIMO devices so that they can understand the challenges of handling large numbers of multiple devices simultaneously. Scientists at Rice University have constructed an array of 96 MIMO antennas that is letting them a look into our future. They have named their array Argos and it is giving them a tool for exploring the ways to process and integrate inputs and outputs from many sources. They are calling their application Mammoth MIMO.

Mammoth MIMO antenna arrays are more efficient than a bunch of single antennas. The large array that Rice is studying can do a whole lot more than connect to 96 devices and they are claiming that  the multiplicative efficiency appears to make the large array as much as ten times more efficient than using a host of individual routers.

That kind of efficiency is going to be necessary in the future in two circumstances. First, this technology could be used immediately in crowded environments. We are all aware of how hard it is to get a cell phone signal when there are a lot of people together in a convention center or stadium. Mammoth MIMO could enable many more connections.

But the more widespread use will be in a world where the normal home or business is filled with scores of IoT devices all wanting to make connections to the network. Without improved MIMO this is not going to be possible.

Massive MIMO is going to require massive processing power to make sense of the huge inflow of simultaneous signals. That will require more computational and data storage locally just to process and make sense of IoT data. I have several friends who work in the field of artificial intelligence and they think their technology is going to be needed to help make sense of the massive data flood that will flow out of IoT.