New Technology – Telecom and Computing Breakthroughs

The InternetToday I look at some breakthroughs that will result in better fiber networks and faster computers – all components needed to help our networks be faster and more efficient.

Increasing Fiber Capacity. A study from Bell Labs suggests that existing fiber networks could be made 40% more efficient by changing to IP transit routing. Today operators divvy up networks into discrete components. For example, the capacity on a given route may be segmented into distinct dedicated 100 Gig paths that are then used for various discrete purposes. This takes the available bandwidth on a given long-haul fiber and breaks it into pieces, much in the same manner as was done in the past with TDM technology to break data into T1s and DS3s.

The Bell Lab study suggests a significant improvement if the entire bandwidth on a given fiber is treated as one huge data pipe, much in the same manner as might be done with the WAN inside of a large business. This makes sense because there is always spare or unused capacity on each segment of the fiber’s bandwidth and putting it all together into one large pipe makes the spare capacity available. Currently Alcatel Lucent, Telefonica, and Deutsche Telekom are working on gear that will enable the concept.

Reducing Interference on Fiber. Researchers at University College London have developed a new set of techniques that reduce interference between different light wave frequencies on fiber. It is the accumulation of interference that requires optical repeaters to be placed on networks to refresh optical signals.

The research team took a fresh approach to how signals are generated onto fiber and pass the optical signals through a comb generator to create seven equidistantly-spaced and frequency-locked signals, each in the form of a 16 QAM super-channel. This reduces the number of different light signals on the fiber to these seven channels which drastically reduces the interference.

The results were spectacular and they were able to generate a signal that could travel without re-amplification for 5,890 kilometers, or 3,660 miles. This has immediate benefit for undersea cables since finding ways to repeat these signals is costly. But there are applications beyond long-haul fiber and the team is now looking at ways to use the dense super-channels for cable TV systems, cable modems, and Ethernet connections.

Faster Computer Chips. A research team at MIT has found a way to make multicore chips faster. Multicore chips contain more than one processor and are used today for intense computing needs in places like data centers and in supercomputers.

The improvement comes through the creation of a new scheduling technique they are calling CDCS (computation and data co-scheduling). This technique is a way to more efficiently distribute data flow and the timing of computations on the chips. The new algorithm they have developed allows data to be placed near to where calculations are performed, reducing the movement of data within the chip. This results in a 46% increase in computing capacity while also reducing power consumption by 36%. Consequently, this will reduce the need for cooling which is becoming a major concern and one of the biggest costs at data centers.

Faster Cellphones. Researchers at the University of Texas have found a way to double the speed at which cellphones and other wireless devices can send or receive data. The circuit they have developed will let the cellphone radio deploy in ‘full-duplex’ mode, meaning that the radio can make both send and receive signals at the same time.

Today a cellphone radio can do one or the other and your phone’s radio constantly flips between sending or receiving data. Radios have always done this so that the frequencies from the transmitting part of the phone, which are normally the stronger of the two signals, don’t interfere with and drown out the incoming signals.

The new circuit, which they are calling a circulator, can isolate the incoming and outgoing signals and acts as a filter to keep the two separate. Circulators have been is use for a long time in devices like radar, but they have required large, bulky magnets made from expensive rare earth metals. But the new circulator devised by the team does this same function using standard chip components.

This circulator is a tiny standalone device that can be added to any radio chip and it acts like a traffic manager to monitor and control the incoming and outgoing signals. This simple, new component is perfect for cellphones, but will benefit any two-way radio, such as WiFi routers. Since a lot of the power used in a cellphone goes to flipping between send and receive mode, this new technology ought to also provide a significant improvement to battery life.

Million-Fold Increase in Hard Drive Capacity? Researchers at the Naval Research Laboratory have developed a way to magnetize graphene, and this could lead to data storage devices with a million-time increase in storage per size of the device. Graphene is a 1-atom thick sheet of carbon which can be layered to make multi-dimensional stacked chips.

The scientists have been able to magnetize the graphene by sitting it on a layer of silicon and submerging it in a pool of cryogenic ammonia and lithium for about a minute. They then introduce hydrogen, which renders the graphene electromagnetic. The process is adjustable, and with an electron beam you can shave off hydrogen atoms and effectively write on the graphene chip. Today we already have terabyte flash drives. Anybody have a need for an exabyte flash drive?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s