Categories
The Industry

The Growth Rate of Broadband Speeds

Cisco has changed the name of its periodic predictions of broadband usage from the Visual Networking Index to the Annual Broadband Report, and recently issued a report that covers the period from 2018 to predictions made through 2023.

Cisco is one of the few industry players that projects future broadband usage. Their past reports have been spot on in terms of predicting future broadband usage.

One of the items forecast in the Cisco report this year is average landline Internet speeds by world region. Following is their prediction of the average broadband speeds (in Mbps) for North America. This represents a 20% compounded growth, just a hair slower than the 21% predicted in their 2019 report.

2018 2019 2020 2021 2022 2023
56.6 70.1 92.7 106.8 126.0 141.8

It’s worth noting that Cisco includes Canada along with the US in defining North America. I haven’t found equivalent numbers for Canada alone to know if they pull the composite number upward or downward. The big takeaway from the Cisco numbers is that broadband speeds are continuing to climb as ISPs either arbitrarily increase speeds or customers upgrade to faster networks.

Cisco also predicts the future of cellular broadband speeds, as follows:

2018 2019 2020 2021 2022 2023
23.6 31.2 40.1 48.2 54.4 62.4

Interestingly, the cellular speeds are faster than what has been reported by Opensignal. They reported average cellular speeds in early 2019 for the US carriers as AT&T – 17.8 Mbps, Verizon – 20.9 Mbps, T-Mobile – 21.1 Mbps, and Sprint – 13.9 Mbps. That’s slower than Cisco’s 2018  speeds – but it’s worth noting that Canada has one of the fastest cellular networks in the world, which probably raises the Cisco numbers. The bottom-line takeaway from the Cisco numbers is that cellular broadband speeds are growing at an average rate of 21% per year.

The Cisco numbers show that Cisco doesn’t buy into the story that 5G is going to massively increase cellular broadband speeds in the next few years. The most recent increases in broadband speeds come from a few factors. The big carriers are upgrading a lot of cell sites to full 4G and finally utilizing the full power of the 4G specifications. The recent proliferation of small cell sites is relieving congestion from tall cell sites, which should result in faster speeds. Some of the future speed increases are likely due to the phase-out of 3G. While 5G is obviously a component of future cellular speed increases we’re not likely to see a one-time spike in faster speeds.

Perhaps the biggest takeaways from the Cisco numbers is that the FCC is out of step with reality as they cling to the 25/3 Mbps definition of broadband. Cisco says the average landline broadband speed for all of North America in 2019 was 70 Mbps, climbing to almost 93 Mbps this year. Cisco estimates the average speed in three years at almost 143 Mbps. It’s hard to think of any possible justification for not increasing the definition of broadband to match the market.

Unfortunately there is one regulatory reason why the FCC won’t act. If they increase the definition of broadband, they will be declaring that millions of additional homes don’t have acceptable broadband. This particular FCC is not brave enough to take a black eye over the resulting headlines. They already fear that fixing their faulty broadband maps is going to uncover millions of additional rural households without adequate broadband.

Categories
Technology The Industry

US Has Poor Cellular Video

Opensignal recently published a report that looks around the world at the quality of cellular video. Video has become a key part of the cellular experience as people are using cellphones for entertainment, and since social media and advertising have migrated to video.

The use of cellular video is exploding. Netflix reports that 25% of its total streaming worldwide is sent to mobile devices. The new Disney+ app that was just launched got over 3 million downloads of their cellular app in just the first 24 hours. The Internet Advertising Bureau says that 62% of video advertisements are being seen on cellphones. Social media sites that are video-heavy like Instagram and Tik-Tok are growing rapidly.

The pressure on cellular networks to deliver high-quality video is growing. Ericcson recently estimated that video will grow to be almost 75% of all cellular traffic by 2024, up from 60% today. Look back five years, and video was a relatively small component of cellular traffic. To some extent, US carriers have contributed to the issue. T-Mobile includes Netflix in some of its plans; Sprint includes Hulu or Amazon Prime; Verizon just started bundling Disney+ with cellular plans; and AT&T offers premium movie services like HBO or Starz with premium plans.

The quality of US video was ranked 68 out of 100 countries, the equivalent of an F grade. That places our wireless video experience far behind other industrialized countries and puts the US in the same category as a lot of countries from Africa, and South and Central America. One of the most interesting statistics about US video watching is that 38% of users watch video at home using a cellular connection rather than their WiFi connection. This also says a lot about the poor quality of broadband connections in many US homes.

Interestingly, the ranking of video quality is not directly correlated with cellular data speeds. For example, South Korea has the fastest cellular networks but ranked 21st in video quality. Canada has the third-fastest cellular speeds and was ranked 22nd in video quality. The video quality rankings are instead based upon measurable metrics like picture quality, video loading times, and stall rates. These factors together define the quality of the video experience.

One of the reasons that US video quality was rated so low is that the US cellular carriers transmit video at the lowest compression possible to save on network bandwidth. The Opensignal report speculates that the primary culprit for poor US video quality is the lack of cellular spectrum. US cellular carriers are now starting to implement new spectrum bands into phones and there are more auctions for mid-range spectrum coming next year. But it takes 3-4 years to fully integrate new spectrum since it takes time for the cellular carriers to upgrade cell sites and even longer for handsets using a new spectrum to widely penetrate the market.

Only six countries got an excellent rating for video quality – Norway, Czech Republic, Austria, Denmark, Hungary, and the Netherlands. Meanwhile, the US is bracketed on the list between Kyrgyzstan and Kazakhstan.

Interestingly, the early versions of 5G won’t necessarily improve video quality. The best example of this is South Korea that already has millions of customers using what is touted as 5G phones. The country is still ranked 21st in terms of video quality. Cellular carriers treat cellular traffic differently than other data, and it’s often the video delivery platform that is contributing to video problems.

The major fixes to the US cellular networks are at least a few years away for most of the country. The introduction of more small cells, the implementation of more spectrum, and the eventual introduction of the 5G features from the 5G specifications will contribute to a better US cellular video experience. However, with the volume of US cellular broadband volumes doubling every two years, the chances are that the US video rating will drop more before improving significantly. The network engineers at the US cellular companies face an almost unsolvable problem of maintaining network quality while dealing with unprecedented growth.

Categories
The Industry

Cellular Broadband Speeds – 2019

Opensignal recently released their latest report on worldwide cellular data speeds. The company examined over 139 billion cellphone connections in 87 countries in creating this latest report.

South Korea continues to have the fastest cellular coverage in the world with an average download speed of 52.4 Mbps. Norway is second at 48.2 Mbps and Canada third at 42.5 Mbps. The US was far down the list in 30th place with an average download speed of 21.3 Mbps. Our other neighbor Mexico had an average download speed of 14.9 Mbps. At the bottom of the list are Iraq (1.6 Mbps), Algeria (2.1 Mbps) and Nepal (4.4 Mbps). Note that these average speeds represent all types of cellular data connections including 2G and 3G.

Cellular broadband speeds have been improving raoidly in most countries. For instance, in the 2017 report, Opensignal showed South Korea at 37.5 Mbps and Norway at 34.8 Mbps. The US in 2017 was in 36th place at only 12.5 Mbps.

Earlier this year Opensignal released their detailed report about the state of mobile broadband in the United States. This report looks at speeds by carrier and also by major metropolitan area. The US cellular carriers have made big strides just since 2017. The following table compares download speeds for 4G LTE by US carrier for 2017 and 2019.

2019 2017
Download Latency Download Latency
AT&T 17.8 Mbps 57.8 ms 12.9 Mbps 63.8 ms
Sprint 13.9 Mbps 70.0 ms 9.8 Mbps 70.1 ms
T-Mobile 21.1 Mbps 60.6 ms 17.5 Mbps 62.8 ms
Verizon 20.9 Mbps 62.6 ms 14.9 Mbps 67.3 ms

Speeds are up across the board. Sprint increased speeds over the two years by 40%. Latency for 4G is still relatively high. For comparison, fiber-to-the-home networks have latency in the range of 10 ms and coaxial cable networks have latency between 25 – 40 ms. The poor latency in cellular networks is one of the reasons why browsing the web on a cellphone seems so slow. (the other reason is that cellphone browsers focus on graphics rather than speed).

Cellular upload speeds are still slow. In the 2019 tests, the average upload speeds were AT&T (4.6 Mbps), Sprint (2.4 Mbps), T-Mobile (6.7 Mbps) and Verizon (7.0 Mbps).

Speeds vary widely by carrier and city. The fastest cellular broadband market identified in the 2019 tests was T-Mobile in Grand Rapids, Michigan with an average 4G speed of 38.3 Mbps. The fastest upload speed was provided by Verizon in New York City at 12.5 Mbps. Speeds vary by market for several reasons. First, the carriers don’t deploy the same spectrum everywhere in the US, so some markets have less spectrum than others. Markets vary in speed due to the state of upgrades – at any given time cell sites are at different levels of software and hardware upgrades. Finally, markets also vary by cell tower density and markets that serve more customers for each tower are likely to be slower.

Many people routinely take speed tests for their home landline broadband connection. If you’ve not taken a cellular speed test it’s an interesting experience. I’ve always found that speeds vary significantly with each speed test, even when run back-to-back As I was writing this blog I took several speed tests that varied in download speeds between 12 Mbps and 23 Mbps (I use AT&T). My upload speeds also varied with a top speed of 3 Mbps, and one test that couldn’t maintain the upload connection and measured 0.1 Mbps on the test. While landlines broadband connections maintain a steady connection to an ISP, a cellphone establishes a new connection every time you try to download and speeds can vary depending upon the cell site and the channel your phone connects to and the overall traffic at the cell site at the time of connection. Cellular speeds can also be affected by temperature, precipitation and all of those factors that make wireless coverage a bit squirrelly.

It’s going to be a few years until we see any impact on the speed test results from 5G. As you can see by comparing to other countries, the US still has a long way to go to bring 4G networks up to snuff. One of the most interesting aspects of 5G is that speed tests might lose some of their importance. With frequency slicing, a cell site will size a data channel to meet a specific customer need. Somebody downloading a large software update should be assigned a bigger data channel with 5G than somebody who’s just keeping up with sports scores. It will be interesting to see how Opensignal accounts for data slicing.

Categories
The Industry

Our Lagging 4G Networks

I have to scratch my head when I read about people who rave about the 4G data speeds they get. First, I travel all over the country and I have yet to see a 4G data speed above 20 Mbps. And yet I’ve seen claims in various online forums for speeds as high as 60 Mbps. I’ve been in a number of major cities in the last six months and have not once seen speeds that I would consider fast.

Second, a report just came out from OpenSignal, a company that provides an app that maps cellular coverage. They collected data recently from 325,000 users around the world and used that data to compare the 4G networks in 140 different countries. Their data showed that the US has the 14th slowest 4G of all these countries at an average paltry speed of 10 Mbps.

Hungary, Denmark, South Korea, Romania, Singapore, and New Zealand have the fastest 4G, all with average speeds of above 25 Mbps, with New Zealand seeing an average speed of 36 Mbps download.

I often run speed tests, but the real way to test 4G speeds is by trying to open web pages I often use at home. I know it’s generally far more efficient to use an app rather than the mobile web, but I open web pages just to see how fast coverage is. It’s well known that speed test results can be rigged by your carrier who knows you are using a speed test site. What I generally find is that web pages that leap onto my screen at home seem to take forever to load on my cellphone, and sometimes they never load.

Why does this matter? I think it matters because there are tons of industry pundits who opine that our broadband future is wireless and that we don’t need to be investing in fiber. They say that wireless is going to get so fast that nobody will feel the need for a landline based internet connection. For a whole long list of reasons I think that argument is totally bosh. Consider the following:

  • Cellular data speeds drop quickly with distance from the cell tower. Today cell phone towers are not situated for data coverage and were built to handle voice traffic. A cell tower can complete a voice call at a much greater distance from the tower than it can make a strong data connection.
  • We could always build more towers to bring transmitters closer to people. But for those new towers to work they are going to have to be fiber fed, something that very few companies are willing to invest in.
  • Cell phone signals don’t penetrate structures very well. I recently visited my dentist. In the parking lot I was easily able to read news articles on Flipboard. I then walked into the waiting room, which has big windows to the outside world, but the ability to read articles slowed down a lot. Then when I was taken back to an interior room that was only one room further from the outside, I couldn’t even get the app to open. This is not an unusual experience and I see it often.
  • Cell sites can only handle a limited number of customers and they get overwhelmed and degrade if they get more demand than optimum. And the more bandwidth that is delivered, the easier it is for a cell site to reach capacity.
  • The various swaths of spectrum used for cellular data each have their own unique limitations. In many cases the spectrum is carved into somewhat small channels (which was done before we conceived using the spectrum for data) and it’s very hard to cobble together a large wireless data path. It generally means linking several frequencies to a given customer data path, which is both complicated and somewhat taxing on a cellphone.
  • Data caps, data caps, data caps. Let’s face it, as long as the cellphone companies want to charge $10 per downloaded gigabit then they cannot be a serious contender for anybody’s real life data usage. I estimate that my household downloads at least 500 gigabits per month at home and I don’t think we are unusual. If I was paying cellphone data rates that would cost me an astounding $5,000 per month. Even should they cut their rates by 90% this would still cost an eye-popping $500 per month. As long as cellphone data rates are 100 times higher than landline rates they are something you use to casually browse the news, not as a real internet connection.
Categories
Technology The Industry

The Skinny on U.S. 4G Data Speeds

I am a statistic freak and I read any and all statistics I can find about the telecom industry. A lot of statistics are interesting but require a lot of heavy lifting to see what is going on beneath the numbers. But I ran across one set of statistics that sums up the problems of wireless 4G data in this country in a few simple numbers.

A company called OpenSignal has an app that people can use to measure the actual download speeds they see on LTE 4G networks. This app is used worldwide and so we can also compare the US to other parts of the world. In 2014 the comparisons were made from readings from 6 million users of the app.

The first interesting statistic is that the US came in 15th in the world in LTE speeds. In 2014 the US average download speed was a paltry 6.5 Mbps across all US downloads using 4G. At the top of the chart was Australia at 24.5 Mbps, Hong Kong at 21 Mbps, Denmark at 20.1 Mbps, Canada at 19.3 Mbps, Sweden at 19.2 Mbps and South Korea at 18.6 Mbps. Speeds drop pretty significantly after that, and for example Japan was at 11.8 Mbps. So beyond all of the hype from AT&T and Verizon touting their network speeds, they have not done a very good job in the US.

But the second statistic is even more telling. The speeds in the US dropped from 9.6 Mbps in 2013 to 6.5 Mbps in 2014. The US was the only country on the list of the top fifteen countries that saw a significant percentage drop from one year to the next. Sweden did have a drop, but they went from 22.1 Mbps to 19.2 Mbps

So what does this all mean? First, the drop in speed can probably best be explained by the fact that so many people in this country are using wireless data. Large amount of users are obviously overwhelming the networks, and as more people use the wireless data networks the speeds drop. Our wireless networks are all based upon the total bandwidth capacity at a given cell site, and so to the extent that more people want data than a cell site is designed for, the speeds drop as the cell site tries to accommodate everybody.

But for the average 4G speed for the whole year to only be 6.5 Mbps there has to be a whole lot more to the story. One might expect Canada to be faster than the US simply because we have a lot more large cities that can put strains on wireless networks. But you wouldn’t expect that to make the Canadian 4G experience three times faster than the US experience. And there are very few places on earth as densely populated as Hong Kong and they have the second fastest 4G networks in the world.

It’s obvious from these numbers that the US wireless carriers are not making the same kinds of investments per customer as other countries are doing. It’s one thing to beef up urban cell sites to 4G, but if those cell sites are too far apart then too many people are trying to use the same site. I would have to guess that our main problem is the number and spacing of cell sites.

But we also have a technology issue and regardless of what the carriers say, there are a lot of places that don’t even have 4G yet. I don’t have to drive more than 2 miles outside my own town to drop to 3G coverage and then only a few more miles past that to be down to 2G. A few weeks ago I was in Carlsbad California, a nice town halfway between LA and San Diego and right on I-5. I couldn’t even find a 2G network there at 5:00 in the evening, probably due to all of the traffic on the interstate.

I hope the FCC looks at these kinds of statistics because they debunk all of the oligopoly hype we get from the wireless carriers. I laugh when people tell me they are getting blazing fast speeds on 4G, because it’s something I look at all of the time when I travel and I have never seen it. When I hear of somebody who claims that they are getting 30 Mbps speeds I know that they must be standing directly under a cell tower at 3:00 in the morning. I like speed, but not quite that much.

Exit mobile version